
A Kubernetes Underlay for OpenTDIP Forensic
Computing Backend

Pouria Zahraei
Computer Science and Software Engineering

Concordia University
Montreal, Canada

s ahrae@cse.concordia.ca

Serguei Mokhov
Computer Science and Software Engineering

Concordia University
Montreal, Canada

mokhov@cse.concordia.ca

Joey Paquet
Computer Science and Software Engineering

Concordia University
Montreal, Canada

paquet@cse.concordia.ca

Peyman Derafshkavian
Computer Science and Software Engineering

Concordia University
Montreal, Canada

p derafs@cse.concordia.ca

Abstract—We propose an underlay based on Kubernetes to
enable the scalable fault tolerance of the General Intensional Pro-
gramming System’s distributed run-time demand-driven backend
to gather digital evidence from GitHub repositories and encode
them in FORENSIC LUCID for further analysis in the integrated
OpenTDIP environment.

Index Terms—OpenTDIP, Kubernetes, FORENSIC LUCID,
GIPSY, JSON, encoding, digital evidence

I. INTRODUCTION

By definition, forensics is the practice of scientists analyzing
evidence to help law enforcement investigators to solve crimes
by reconstructing events.

As a method of conducting digital criminal investigations,
digital forensics uses data preserved on various computer
devices as examination evidence that may be utilized in a legal
proceeding [1].

The analysis of digital evidence that can be used in court to
determine legal issues is a sub-field of forensics called forensic
computing, which relies a computer and specialized software
to extract and assess evidence that can be found on any kind
of storage or electronic device. It is sometimes necessary to
gather a very large volume of data, filter it using elaborated
techniques appropriate to each different kind of data, and
then analyze it in order to produce a piece of appropriate
proof that will allow us to learn more specific details about
illegal behaviour presentable in court. Computer forensics
includes preserving, identifying, extracting, documenting, and
interpreting computer data [2], [3].

In forensic computing, many methods are used, but the fun-
damental process entails obtaining evidence from any source,
authenticating the evidence, and evaluating the evidence [1],
[3]. Digital forensic investigation is particularly required when
the volume of data is too large or complex to gather and when
the proof is too complex to manage manually.

FORENSIC LUCID [1] is a forensic case specification lan-
guage for automatic evidence composition used to formally

represent the knowledge of and reason about digital crime
incidents. It is designed to describe forensic evidence in
digital crime incidents as a context of evaluations, which they
often match the original condition of the situation in relation
to what was actually observed [1]. Its evaluation engine is
based on outcome backtracing and, if a backtrace is found, to
offer the path for the related event reconstruction. The results
of the FORENSIC LUCID expressions are true or false, i.e.,
“guilty” or “not guilty”, which can be done by one or multiple
backtraces [1]. FORENSIC LUCID is based on LUCID, which
is an intensional dataflow programming language [4], [5], [6],
[7], [8].

GIPSY is a multi-language programming compiler and
execution engine framework for compiling all types of Lu-
cid dialects, including FORENSIC LUCID [9]. Using GIPSY,
FORENSIC LUCID programs can be compiled and executed as
a distributed system using a demand-driven dataflow model.
While GIPSY’s multi-tier architecture provides a base im-
plementation of the underlying distributed evaluation and
computation of FORENSIC LUCID expression, its setup is
rather manual to configure and operate its nodes and it lacks
automated fault tolerance if nodes go out of service.

In this paper, we show how a FORENSIC LUCID dataset
can be collected for a followup computation in a forensic
investigation with evidence from GitHub repositories. We
also demonstrate how the execution engine can integrate the
use of the Kubernetes distributes processing orchestration
features such as automatic scaling, and automatic availability
management as an underlay of the GIPSY’s distributed run-
time system to address the mentioned limitations while being
transparent to GIPSY. We use it for both the dataset collection
as well as subsequent translation, and compilation [10].

Simply presented, the forensic processing pipeline that we
implement consists of the following steps:

• The forensic investigator is primarily focused on a par-
ticular software implementation vulnerability observes a



list of GitHub repositories or projects that include code
related to the target vulnerability.

• For further analysis, every piece of a potentially essential
data item in the repository is retrieved in JSON format.

• These “witness statements” (e.g., commits) are the en-
coded as part of a FORENSIC LUCID observation se-
quence [1].

• The collection of “testimonies” (e.g., commit history) is
then encoded and specified as an evidential statement,
which is then formed into the local knowledge base for
the forensic case [1].

• Finally, the acquired FORENSIC LUCID dataset is vali-
dated through their compilation using GIPSY’s compiler.
Using GIPSY’s evaluating system, one can then check
that theories agree with the evidence, meaning the theory
has an explanation for the evidential context and possibly
explains the chain of events that led to a security inci-
dent [1] and provide the event reconstruction sequence of
indicate the absence of one.

The objective of this work is, therefore, to facilitate the
forensic investigator’s task to collect and examine the digital
evidence, e.g., from GitHub repositories, for forensic inves-
tigation by encoding it in FORENSIC LUCID programming
language at large. In order to accomplish this, we design
and implement General Intensional Programming System’s
(GIPSY) runtime compute network node instances by using
Kubernetes container orchestration to have an automatically
highly-available underlying system. This is done in the context
of the big picture of the Open Trusted Digital Investigation
Platform (OpenTDIP), which is poised to cover all aspects of
digital forensic computing from evidence management, chain
of custody, formal methods, and event reconstruction, among
others.

II. BACKGROUND

A. FORENSIC LUCID

Following the definition of FORENSIC LUCID in Section I,
in this section, we describe what the reader needs to under-
stand from the perspective of this paper. The reader is already
familiar with some of the essential features of FORENSIC
LUCID, such as the fact that it is a Lucid-based application that
represents a tagged token dataflow program [1]. Before delving
further into FORENSIC LUCID’s architecture, we present two
fundamental concepts employed in this context. At first, we
start by defining the observation sequence, which is a list
of observations arranged chronologically. These observation
sequences represent a continuous witnessed story [1].

os = (observation1, observation2, observation3, ...) (1)

Second, an evidential statement is a set of observation se-
quences, which is not necessarily arranged chronologically [1].

es = (os1, os2, os3, ...) (2)

Below is an example of a typical patter specification for a
FORENSIC LUCID program. After locating forensically inter-
esting data, this program, for instance, will be able to perform

a semantic and syntactic check by the GIPSY’s compiler, and
in doing so it can assist the forensic investigator in scripting
the forensics events using an autonomous forensic computing
system.

Fig. 1. Simplified FORENSIC LUCID digital evidence context specification.

B. General Intensional Programming System (GIPSY)

GIPSY is a multi-language programming platform created
to compile and run all the languages in the Lucid family of
computer languages dialects. The compiler framework (GIPC),
the execution engine (GEE), and the programming environ-
ment (RIPE) make up the basis of the GIPSY’s architecture.
These three elements work together to support various compil-
ers, and as a consequence, binary output is produced that is a
compiled version of the Lucid program [1] that can then in turn
be executed by the GISPY execution engine. The GIPC is a

Fig. 2. High-level structure of GIPSY’s GEER flow overview [1].

compiler framework that enables syntax and semantic analysis,
and translation of any Lucid variant. It is built on the idea
of the Generic Intensional Programming Language (GIPL),
which serves as the fundamental run-time language into which
all other varieties of the Lucid language may be transformed
and then executed. The Generic Eduction Engine Resources
(GEER) is a dictionary of run-time resources compiled from
a GIPL program that had previously been generated from
the original program using semantic translation rules defining
how the original Lucid program can be translated into the
GIPL. Under the framework of GIPSY there are a number
of compilers, and the corresponding run-time environment
is present under the eduction execution engine (GEE) [11],
[1]. GEE is the component where the Demand Migration
System (DMS) and multitier architecture as a whole are
dependent on the demand-driven tagged token dataflow dis-
tributed computation model [1], [12], [13]. Every tier in the
architecture of this distributed system can have any number of
instances where demands are distributed without knowledge
of the processing or storage locations of the demands. Any



tier or node failure can happen without having a fatal effect
on the system while computation is taking place. Nodes and
tiers can be added or removed without any noticeable lag,
nodes and tiers can impact how each GIPSY program is
performed at runtime, meaning a specific node or tier may have
different programs requiring its computational resources [1].
The Demand Migration System (DMS) can be realized as an
instance of the Demand Migration Framework (DMF) [13].
One such particular DMS that we used for the purpose of
this particular research uses Jini (Apache River) to transport
and store their results’ demands, and a JavaSpaces repository
serves as a temporary data storage for the most commonly
demanded computations and their outputs. The DMF is an
architecture that is based on the demand store and consists of
transport agents (TAs) that implement a specific protocol to
store and deliver demands across different nodes and tiers. The
evaluation process starts with a demand generator that creates
demands according to the problem specification (generally as
represented by a Lucid program, e.g., FORENSIC LUCID),
which are sent to the demand store. Form there, any other
generator or worker connected to this store can pick up these
demands and continue the processing further. Eventually, some
of the demands will be calls to procedures (i.e., procedural
demands), which is a specific kind of demand that can be
processed by workers to perform processing on a higher gran-
ularity level by relying on a procedural programming language
for their execution, e.g. Java, C++, etc. Once demands have
been picked up and processed, i.e. their corresponding values
have been calculated, they are put back in the store with their
value embedded in the demand and are tagged as processed
demands, at which point their original generator will be able
to fetch them and continue its processing, until all demands
have been finally processed.

C. Kubernetes

Kubernetes is an open-source container-based orchestra-
tor that aids in the autonomous deployment of scalable,
reliable, and manageable distributed systems. In order to
achieve these goals, Kubernetes provides numerous services
that are provided through the network via APIs [14]. These
APIs are frequently given through a distributed system, with
the many components that implement the API running on
separate machines connected by a network and coordinating
their operations through network communication. Because we
increasingly rely on these APIs for various areas, they must
be extremely dependable. Even if a section of the system
crashes or ceases operating, their failure should not lead to the
general failure of the entire system, and their recovery process
should be as seamless and as lossless as possible. They must
also ensure availability during software rollouts. Along with
the increasing number of service requests, they must ensure
scalability to expand service response capacity and keep up
with ever-increasing demand without requiring a fundamental
restructure of the distributed system that implements the
services [15]. There are various advantages to using containers

and container APIs like Kubernetes. Some of the fundamental
reasons to take advantage of Kubernetes are such as [15]:

• High availability – Kubernetes provides a self-healing
technology for its managed microservice-based appli-
cations. When a Kubernetes’ host fails, it can resume
failed containers and replace or reschedule them [16] to
eventually resume the computation. Forensic computation
potentially involves the computing of a very large amount
of data extracted for a large number of different data
sources. An integrated forensic computing system is thus
prone to experience failure in extracting data from any of
these diverse sources, and the failure of one source should
not impact the processing of other sources. Given that
many such failure are likely to happen, it is primordial to
have an automated mechanism to somehow automatically
resume processing from a failed node execution. Hence
high availability is a key factor for an integrated forensic
computing system.

• Scalability – Kubernetes provides scalability by separat-
ing components from one another using specified APIs
and service load balancers. APIs and load balancers keep
each component of the system separate. Load balancers
offer a buffer between operating instances of each service,
whereas APIs provide a buffer between the implementer
and the user. This design makes it easy to scale and
increase the size of the program without having to alter
or reconfigure any of the other layers. Additionally, when
it comes to scaling the services, since the containers
are immutable and the configurations are declarative,
scaling up the services is only a matter of modifying
the configuration file [14], [15]. Given the potential
extreme volume of data that may need to be processed
by an integrated forensic processing system, scalability
is an essential characteristic for its useful and viable
implementation.

• Abstraction – Kubernetes provides abstraction features,
which allow the applications to be moved across any
environment. When developers build their applications,
moving the applications across various environments hap-
pens merely by moving the declarative configuration to
adapt to the different context [15], [14]. Given that an
integrated forensic computing system is by definition
extracting data from sources that vary widely in their
context and configuration, it is essential that its various
computation nodes be abstractly defined and executable
in different contexts.

• Efficiency – Kubernetes offers several features for re-
source management. At the container level, parame-
ters can be assigned to containers for setting mini-
mum or maximum values for the resource assignment
to the container, such as CPU load and RAM volume.
Given that forensic computation potentially involves very
resource-intensive demands on the computation nodes,
such efficiency-related features provided by Kubernetes
is necessary in our context [15], [17].



Before we illustrate the architecture of Kubernetes (Figure 3)
and how it is used in our forensic computing solution as
part of the GISPY execution engine, we here provide a brief
introduction to some fundamental components of Kubernetes
used in our solution:

• A Pod is the smallest unit in a Kubernetes cluster,
which can be created and managed by developers. It
contains one or multiple containers with shared storage
and network resources. The pod packages all containers,
storage assets, and a temporary network identity as a
single unit. A pod’s IP address and port space are shared
by the containers in it [14].

• A Deployment is an abstraction used to create or modify
instances of the pods. It can scale up and scale down the
number of replicas of pods [14].

• A Service is an abstraction that defines a set of pods
and a policy that provides the IP address and DNS name
to access the pods. By creating and deleting pods, each
gets its IP address. Therefore, it would be challenging to
communicate with the pods via their IP address. To avoid
this problem, Kubernetes allows to assign a label to the
pods and select them according to their service labels.
This way, once a pod is deleted and recreated, it has the
same label [14].

• A Volume is used to preserve the data produced by a con-
tainer and for scenarios like sharing file systems among
containers or backing up the data, Docker has a volume
object, which mounts these file systems on the Docker
container, and they are preserved on the host machine.
Containers virtualize an operating system, allowing us to
run multiple containers on a single machine and a shared
operating system [14].

• A Persistent Volume is an API that abstracts the imple-
mentation of physical storage for the pod’s usage whose
lifecycle is independent of the pods [14].

• A Network File System is a shared filesystem volume
which allows to mount an NFS share into a pod. The data
of this volume is kept intact, so when a pod is destroyed,
the data in the NFS will not be deleted. It also allows
data to be pre-loaded and shared between pods [14].

A Kubernetes cluster consists of a control plane (master) node
and multiple worker nodes. For high availability, Kubernetes
as multiple worker nodes. The control plane runs on a cluster
machine and has all Kubernetes objects. The control panel
manages the object states and any modification on the cluster.
It decides on the cluster’s big picture [15], [14].

III. SOLUTION

In this section, we first describe the architecture of our solu-
tion to achieve the requirements regarding the GitHub demand-
driven JSON to FORENSIC LUCID encoder formalization in
GIPSY. We then present the integration of the Kubernetes
cluster for the GIPSY system and different methods we used
to design, implement, and evaluate our proposed solution.

Fig. 3. Kubernetes architecture [14].

A. GIPSY’s JSON to FORENSIC LUCID Encoder

Before diving into the encoder, we need to get familiar with
the JSON (JavaScript Object Notation). JSON is a language-
independent and data interchange text format which is used
for storing and transmitting data and makes it easy for the
server and applications to write and read data. Over the last
years, many different web service APIs have utilized JSON
as a data format [11]. As a result a lot of digital evidence
online comes in this format. Figure 4 presents a sample
of a specific GitHub JSON data file that is passed to the
encoder. To reason about the JSON-based digital evidence
in our system it has to be encoded in FORENSIC LUCID
first, which is true for all evidential sources. The JSON-
to-FORENSIC LUCID encoder is a Java program created to
transform a JSON string into FORENSIC LUCID code which
is then provided to the GIPSY system for compilation [11]. In
Figure 5 you can observe the use case diagram for the JSON
to FORENSIC LUCID encoder. In order to implement different
JSON parsers for various sources such as Twitter, GitHub,
etc., a IJsonParser interface has been developed so that
we can, according to the different applications, implement a
corresponding JSON parser [11]. For instance, in order to
create a JSON parser, we can implement IJsonParser
corresponding to the GitHub JSON structure. The sequence
diagram for JSON to FORENSIC LUCID encoder is illustrated
in Figure 6. As depicted in Figure 7, the conversion is a
linear dataflow graph that consists of three steps, who each
are associated with their own kind of demand to be processed:
(1) the extraction of the data from the GitHub repository
(fetch demands) in JSON format; (2) the transformation of
the extracted JSON data into FORENSIC LUCID code (convert
demands); and (3) the compilation of the FORENSIC LUCID
code (compile demands). The conversion pipeline involves at
least one of he three GIPSY tiers (DGT, DWT and DST)
that will generate and/or process these demands. The DGT
is responsible for the generation of the demands in the order
that is represented in the dataflow graph of the transformation
pipeline. Once the demands get into the DST, they are put
in the pending state. The DWT (which there can be several
execution instances of) is responsible for the execution of
these demands, and to put back their corresponding results



Fig. 4. GitHub JSON data format sample.

Fig. 5. JSON to FORENSIC LUCID encoder use case diagram [11].

into the demand itself, at which point the demand is put in
the processed state. The pipeline starts by the demand gener-
ator (DGT) to generate fetch demands for the processing of
specific GitHub queries according to the forensic investigator’s
specifications. Once the DGT has created the fetch demands, it
will wait for these demands to be in the processed state. Once
it finds some of these demands to be processed, it will proceed
to generate a corresponding convert demand to generate the
corresponding FORENSIC LUCID code that corresponds to this
JSON GitHub fetch demand, will put it in the DST and wait for
it to be processed. Once it finds some of these demands to be in

Fig. 6. System-level sequence diagram for JSON to FORENSIC LUCID
encoder [11].

Fig. 7. Conversion pipeline.

the processed state, it will proceed to generate a corresponding
compile demand to generate an executable version of this
FORENSIC LUCID code. Once all the demands have been
processed, the processing will be over.

To perform the Forensic investigation on the GitHub repos-
itory using GIPSY JSON demand-driven encoder, we shall
have software that conducts a pipeline such as: fetching the



JSON data from GitHub API, converting the JSON data to
Forensic Lucid file and compiling the converted file. Figure 8
illustrates the sequence diagram for the JSON to FORENSIC
LUCID Encoder. In this diagram, the JSONCONVERTERDGT
is the demand generator (DGT), JSONCONVERTERDWT is
our worker (DWT), and DST, is Demand Store Tier, where
the demand generator and worker store the demands and the
results. The user provides a list of URLs of the GitHub repos-
itories that are forensically interesting. The demand generator
will watch for user requests for the JSON parser and builds a
URL demand index with a status of the demand in the DST
(pending, in process, and computed) and pass it to the worker.
Once the demand is stored in the DST, the worker will retrieve
the serialized object from the DST, meaning the worker should
select the appropriate JSON parser, which in this case is Git,
and its job will be to parse the JSON file, fetching the data
from GitHub repository, creating a Java object with the JSON
structure, send the object back as a CTX (context) file, which
includes the list of JSON files, and include a demand to let the
Generator know that the serialized object has been computed
and store the results back to the DST. These data are fetched
from the “commit” endpoint on the Github repository. As you
can observe, it consists of an evidential statement es, and
es has an observation sequence (commit), which consists of
multiple observations such as SHA and commit object, and
commit object consists of data that are forensically interesting
for us. After the DGT receives the results, it will create another
demand to convert the JSON files to Forensic Lucid. DGT will
create a Java object with the CTX file containing the list of
JSON files and store the demand in the DST. Then the worker
will perform the same procedure as it did in fetching the JSON
files, it will convert all the JSON files to FORENSIC LUCID
format and create a list of IPL files corresponding to the JSON
files and store back the list of the IPL files as a result. In
the last step, DGT will create a demand to compile all the
FORENSIC LUCID IPL files. DGT will create a Java object
with the CTX file containing the list of IPL files and store
the demand in the DST. Once the DWT grabs the compilation
demand from the DST, it will begin to compile the FORENSIC
LUCID files and return the output of the compilation as results
to the DST. Eventually, DGT will pass the final results to the
user.

B. Integrating Kubernetes and GIPSY distributing system

In this section, we are going to describe how we integrated
the Kubernetes orchestration platform with the GIPSY system
in order to distribute the process of what we described in
Section III-A. Before we dive into the integration, we will
describe the architecture of GIPSY Node and GIPSY Tiers
[1]. Figure 10 represents a use case diagram where nodes and
tiers start in a GIPSY distributing system.

In this diagram, General Manager Tier (GMT) allows the
GIPSY Nodes and Tiers to register and allocate them to the
GIPSY network instances under its management. In order
to decide if additional tiers nodes need to be produced, the
GMT communicates with the allocated tiers and then, when

necessary, GMT sends GIPSY Nodes system commands to
generate new tier instances. Users may use any GMT to
register a node, which alerts all the other GMTs to its existence
and makes the node accessible to host new GIPSY Tiers upon
request from any GMT [1]. The GIPSY program execution
is divided into three jobs and delegated to different tiers in a
multitier architecture where each tier is an abstract, generalized
object representing a computing unit that interacts with other
tiers utilizing demands to work together to execute a program
as a whole. Therefore, the GIPSY Multi-Tier architecture is
entirely demand-driven [18]. A GIPSY Node is a physical or
virtual computer registered via GMT instance and is ready to
host one or more GIPSY Tiers and is being controlled by GMT
remotely [1]. In accordance with the program declarations
and definitions stored in one of the GIPSY tiers, the Demand
Generator Tier (DGT) creates demands and can be transferred
to other Demand Generator Tiers or Demand Worker Tier
instances to be processed further and for any Lucid program it
can handle requests for, DGT hosts a set of tiers. The Demand
Generator Tier can make system demands asking for more
tiers to be added to its GEER Pool thanks to a demand-driven
method and allow DST instances to process requests for more
programs running on the GIPSY networks they are a part
of [1]. The Demand Worker Tier (DWT) processes demands
written in a procedural language or functions. Same as DGT
the Demand Worker Tier can make system demands through
a demand-driven mechanism to add more GEERs to its GEER
pool, gradually increasing its processing knowledge capability
[1]. The Demand Store Tier (DST) serves as a tier middleware
to move demands between tiers. It also offers persistent storage
for demands and the values generated by those demands,
improving processing performance by preventing the need to
compute each demand’s value each time it is regenerated
after being processed. The Demand Store Tier is made to
include a peer-to-peer architecture when necessary and a way
to join all of the Demand Store Tier instances in a specific
GIPSY network instance in order to prevent experiencing an
execution slowdown in large computations. Therefore demands
or the results of the demands will be stored on any available
DST instance [18]. With what we described with the GIPSY
architecture, we would like to take advantage of Kubernetes to
have a distributed system that can be automatically scalable
and highly available. As we illustrate in the Figure 11, we
have one Control Panel and multiple Worker Nodes in our
architecture. Control Panel consists of essential components
as we described in the Section II-C. In order to work with the
cluster, Developer will transmit its request to the Kubernetes
API Server, which is running on the Control Panel Node and
will take care of the requests by communicating with Kubelet.
Each Worker Node contains Container Runtime, Kubelet,
Kube-proxy and multiple pods, which we will describe in
more detail. In this paperwork, we utilized Docker as a
Container Runtime platform. Each Pod consists of a Network
Namespace, GIPSY Tier Container (DGT, DWT, DST) and
additional supporting containers if needed. In our architecture,
as an additional supporting container, we have a Jini Container



Fig. 8. Detailed design sequence diagram for Github JSON to FORENSIC LUCID encoder.



Fig. 9. Simple FORENSIC LUCID from GitHub repository

Fig. 10. GMT use case diagram [1]

to transport and store their results’ demands for the DGT Pod.
In addition, we added an NFS Server to our cluster to help us
with sharing the configuration files in the initializing state of
the cluster and in future to have a backup from DST, which
we will discuss more in detail in the future work section. In

Fig. 11. Kubernetes integration with GIPSY’s GEE runtime

order to make this immigration work, we containerized the
GIPSY program with Docker, so a GIPSY Tier can operate
inside each pod.

Fig. 12. Kubernetes pod and GIPSY node architecture

IV. EVALUATION
In this section, we describe the experiments that were con-

ducted in order to gather a forensically interesting dataset. In
order to achieve this dataset, we ran our experiments using the
proposed solution as we described in Section III by executing
the GIPSY’s JSON to Forensic Lucid Encoder pipeline, i.e.,
extracting data from GitHub API in JSON format, converting
extracted JSON data into Forensic Lucid code and compile the
Forensic Lucid code. For gathering a dataset, as we mentioned,
we mainly aim for the cybersecurity vulnerabilities that exist
publicly and fetch them from the Commit API since it con-
tains various practical information such as commit messages,
comments and patches, which show the changes made to the
file. A system called Common Vulnerabilities and Exposures
offers a way for the public to exchange knowledge about
cybersecurity vulnerabilities and exposures. CVE vulnerability
data is accessible at www.cvedetails.com. Below is a sample
list of URLs we selected from the CVE website for some
popular projects. We extracted the Commit URLs from these
discovered vulnerabilities and used them as input to run our
proposed pipeline to encode as evidence.

• https://github.com/ tensorflow/ tensorflow/security/advisories/
GHSA-79h2-q768-fpxr

• https://github.com/pjsip/pjproject/ security/advisories/GHSA-rwgw-vwxg-q799
• https://github.com/pypa/pipenv/security/advisories/GHSA-qc9x-gjcv-465w
• https://github.com/grafana/grafana/security/advisories/GHSA-c3q8-26ph-9g2q
• https://github.com/solidusio/solidus/security/advisories/GHSA-qxmr-qxh6-2cc9
• https://github.com/github/codeql-action/security/advisories/

GHSA-g36v-2xff-pv5m
• https://github.com/bytecodealliance/wasmtime/security/advisories/

GHSA-hpqh-2wqx-7qp5
• https://github.com/netty/netty/ security/advisories/GHSA-f256-j965-7f32
• https://github.com/swagger-api/ swagger-codegen/security/advisories/

GHSA-pc22-3g76-gm6j
• https://github.com/http4s/blaze/security/advisories/GHSA-xmw9-q7x9-j5qc

By executing our experiment on the URLs we provided, we
collected our dataset containing 1000 JSON files, 1000 IPL
Forensic Lucid files, and corresponding compiled Forensic
Lucid files. We followed our experiments by finding a relation
between the number of workers and the number of URLs.
Figure 13 depicts the total execution time for each amount
of workers. As we can observe below, the execution time
remains constant once there are ten workers, which is equal
to the number of URLs. Following, we discuss the experi-
ments conducted to distribute the execution of the Forensic
Lucid encoder by integrating Kubernetes and GIPSY. In our
experiment, we employed three physical computers, one as our
Control Panel and two as Workers. Employing Kubernetes in
order to have a GIPSY container orchestration allow us to have
a GIPSY cluster that:

• Each tier instance can quickly get started using a .yaml
configuration file.



Fig. 13. Execution time depending on the number of DWTs (workers)

• Scaling up and down the cluster is only a matter of
modifying the replica number in the .yaml file to deploy
a number of GIPSY compute nodes.

• Once a Node goes down, Kubernetes will handle the
relocation of the running GIPSY compute node pod to
the next available node automatically.

V. CONCLUSION

In this section, we conclude our research based on the
conducted experiments and the results that we achieved in
Section IV [10].

• In our work, we devised a solution so that forensic
investigators could use GitHub to use detected vulnerabil-
ities listed in the Common Vulnerabilities and Exposures
(CVE), which is a list of publicly disclosed computer
security flaws, and gather a dataset in order to perform an
investigation on program weaknesses and vulnerabilities
related to security, software engineering from GitHub
projects written in various programming languages.
We designed and implemented a JSON demand-driven
encoder and we defined our classes to perform the
FORENSIC LUCID conversion pipeline (data extraction,
converting to FORENSIC LUCID format, and compiling
the FORENSIC LUCID files). In order to distribute the
execution, we took advantage of the GIPSY distributed
system. Therefore we defined the required classes for
distributing the pipeline execution of the JSON demand-
driven encoder using the GIPSY distributed computing
system.

• In the FORENSIC LUCID conversion pipeline, we defined
each URL as a demand signature to store it in the DST,
which stays the same throughout the whole process of the
pipeline, and once the conversion is finished, the demand
signature alongside the results will be stored in the DST.
By employing this approach, the pipeline does not require
execution for the same demand in the DST. Therefore, if
the forensic investigator requests a demand that already
exists in the DST, the output would be fast since the

demand results have already been stored in the DST after
the first execution.

• By integrating the distributed processing orchestration
features of Kubernetes with GIPSY, we improved the
GIPSY in such a way that configuring, starting up and
registering GIPSY nodes would happen automatically
without any manual configurations. We also described
that the execution time of the JSON demand-driven
encoder using Kubernetes is slightly more. However, by
employing the Kubernetes there would be no need for the
compilation each time and installing all dependencies in
order to start a GIPSY instance, which saves a significant
amount of time.

• By integrating the Kubernetes, if a GIPSY node dies,
all the pods will be recreated on the next available
machine and automatically will get registered to the
GIPSY network. Therefore, there would be no need to
reconfigure and startup everything manually. Thus we
were able to have a scalable fault-tolerant system.

• We were able to share the directories for the initial
configuration and the dataset files among the pods, by
employing NFS so that each pod has access to the same
directory.

A. Limitations and Future Work

At the moment, despite the fact that we achieved all the
requirements [10] and were able to provide solutions for our
stated problem, we faced some limitations, which require work
in the near future. Some of the limitations and future works
are listed below:

• At the moment, we were able to collect a FORENSIC
LUCID dataset from the GitHub repositories in order
to conduct future investigations. However, we did not
provide any hypothesis to analyze the evidential data.
This can be done in future work to conduct forensic
analysis and attempt to prove a hypothesis.

• In order to perform the data extraction for the GitHub
API, there is a 5,000 request per hour limit for the au-
thorized user by a user or a personal token. Therefore, our
evaluation experiments were limited to not a significant
amount of data to fetch. In our experiments, we gathered
1000 data element, which requires 1000 requests for each
time execution. At the moment, the system has already
been implemented so that once it reaches the limit of 5000
requests, it will wait until the limit rests and resume the
fetching. In order to have a more accurate analysis would
be better to fetch a much more important amount of data.

• In this research, we only conducted the data extraction
from GitHub repositories. We did not attempt to perform
the same computation for the other open resources such
as BitBucket, or other sources such as social media,
e.g., Twitter, etc. It would be interesting to have the
same conversion pipeline for other resources that could
then be used as evidential statements to be processed
by FORENSIC LUCID to prove or disprove much more
diversified forensic cases.



• There are various container orchestration tools, such as
OpenShift, Docker Swarm, Podman, etc., to integrate
with GIPSY, which we did not attempt to employ.

• Although we were able to design and implement a system
that GIPSY node can automatically get configured and
startup, we need to allocate the GIPSY tiers manually.
Since in order to allocate a GIPSY node, we need to
specify the node index as we described in [10] and the
index varies for each node registration, at the moment, it
is not possible to allocate them automatically. In addition,
in case a node dies, we have a scalable fault-tolerant
mechanism, which will automatically configure and reg-
ister the GIPSY nodes. However, as we mentioned, the
allocation in this scenario should happen manually by
defining the index of each registered GIPSY node inside
the newly recreated pod. The next step is finding a solu-
tion to perform the tier allocation process automatically.

We published our project to the Docker Hub repository as
a set of Docker images, which can be found in:
https://hub.docker.com/r/s4lab/gipsy-json-u18/ tags. In the
links below, we are releasing GitHub repositories, to which
our work will be published in the near future.

• S4L GIPSY Research and Development:
https://github.com/gipsy-dev

• OpenTDIP:
https://github.com/opentdip

REFERENCES

[1] S. A. Mokhov, “Intensional cyberforensics,” Ph.D. dissertation, De-
partment of Computer Science and Software Engineering, Concordia
University, Montreal, Canada, Sep. 2013, online at http://arxiv.org/abs/
1312.0466.

[2] S. A. Mokhov, E. Vassev, J. Paquet, and M. Debbabi, “Towards a
self-forensics property in the ASSL toolset,” in Proceedings of the
Third C* Conference on Computer Science and Software Engineering
(C3S2E’10). New York, NY, USA: ACM, May 2010, pp. 108–113.

[3] W. G. Kruse and J. G. Heiser, Computer Forensics: Incident Response
Essentials. Addison-Wesley Professional, 2001, ISBN: 9780672334085,
0672334089.

[4] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge,
Multidimensional Programming. London: Oxford University Press, Feb.
1995, ISBN: 978-0195075977.

[5] E. A. Ashcroft and W. W. Wadge, “Lucid – a formal system for writing
and proving programs,” SIAM J. Comput., vol. 5, no. 3, 1976.

[6] ——, “Erratum: Lucid – a formal system for writing and proving
programs,” SIAM J. Comput., vol. 6, no. 1, p. 200, 1977.

[7] J. Plaice, B. Mancilla, G. Ditu, and W. W. Wadge, “Sequential demand-
driven evaluation of eager TransLucid,” in Proceedings of the 32nd
Annual IEEE International Computer Software and Applications Con-
ference (COMPSAC). Turku, Finland: IEEE Computer Society, Jul.
2008, pp. 1266–1271.

[8] W. W. Wadge and E. A. Ashcroft, Lucid, the Dataflow Programming
Language. London: Academic Press, 1985.

[9] S. A. Mokhov and J. Paquet, “Using the General Intensional Program-
ming System (GIPSY) for evaluation of higher-order intensional logic
(HOIL) expressions,” in Proceedings of the 8th IEEE / ACIS Interna-
tional Conference on Software Engineering Research, Management and
Applications (SERA 2010). IEEE Computer Society, May 2010, pp.
101–109, pre-print at http://arxiv.org/abs/0906.3911.

[10] S. P. Zahraei, “A GIPSY runtime system with a Kubernetes underlay
for the OpenTDIP forensic computing backend,” Master’s thesis, De-
partment of Computer Science and Software Engineering, Concordia
University, Montreal, Canada, 2022, https://spectrum.library.concordia.
ca/id/eprint/991314/.

[11] P. Derafshkavian, S. Huneault-LeBlanc, S. Renault-Crispo, A. Marwaha,
S. A. Mokhov, and J. Paquet, “Toward scalable demand-driven json-to-
forensic lucid encoder in gipsy,” in 2020 International Symposium on
Networks, Computers and Communications (ISNCC), 2020, pp. 1–6.

[12] A. H. Pourteymour, “Comparative study of Demand Migration Frame-
work implementation using JMS and Jini,” Master’s thesis, Department
of Computer Science and Software Engineering, Concordia Univer-
sity, Montreal, Canada, Sep. 2008, http://spectrum.library.concordia.ca/
975918/.

[13] E. I. Vassev, “General architecture for demand migration in the GIPSY
demand-driven execution engine,” Master’s thesis, Department of Com-
puter Science and Software Engineering, Concordia University, Mon-
treal, Canada, Jun. 2005.

[14] Kubernetes, “Kubernetes documentation,” https://kubernetes.io/docs/
home/, last viewed May 2022, 2022.

[15] B. Burns, J. Beda, and K. Hightower, Kubernetes Up
and Running Dive into the Future of Infrastructure.
O’Reilly Media, 2019, ISBN: 9781492046530, https://www.
vmware.com/content/dam/digitalmarketing/vmware/en/pdf/docs/
vmware-kubernetes-up-running-dive-into-the-future-of-infrastructure.
pdf.

[16] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Kubernetes as
an availability manager for microservice applications,” Jan 2019, https:
//doi.org/10.48550/arXiv.1901.04946.

[17] S. Verreydt, E. Truyen, E. H. Beni, and B. Lagaisse, “Leveraging ku-
bernetes for adaptive and cost-efficient resource management,” October
2019.

[18] J. Paquet, “Distributed eductive execution of hybrid intensional pro-
grams,” in Proceedings of the 33rd Annual IEEE International Com-
puter Software and Applications Conference (COMPSAC’09). IEEE
Computer Society, 2009, pp. 218–224.


