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Abstract—Understanding AI-driven systems has become fun-
damental, particularly when these systems are employed for crit-
ical decision-making, as is the case in the field of cybersecurity.
In this regard, explainability has been extensively advocated as a
cornerstone to comprehend the model, thereby enhancing trust
and accountability in data-driven systems. Through the successful
use-case of a risk exposure assessment framework which aims to
proactively reduce an organization’s attack surface, we propose
an explainable proxy which is founded on the generation of
systematic evaluations of explanations. The proposed framework
offers a swift and dependable method for assessing explanations
specifically tailored for the cybersecurity domain.

Index Terms—Cybersecurity, Artificial Intelligence, Behavioral
Modelling, Explainability

I. INTRODUCTION

Undoubtedly, Artificial Intelligence has become an indis-
pensable driver for almost all contemporary cybersecurity ap-
pliances. Its significance is paramount across a diverse array of
applications, spanning from network and information security
solutions such as Firewalls, Network Access Control (NAC)
or Intrusion detection and prevention systems (IDPSs) to the
realm of End-user Behavior frameworks – formerly recognized
as User and Entity Behavior Analytics (UEBA). Concretely,
Artificial Intelligence (AI) has paved the way augmenting the
detection, prevention and response capabilities of cybersecu-
rity frameworks by providing out-of-the-box efficient analysis
but also enabling security engineers to proactively optimise the
daily operations of Security Operation Centers (SOC) whom
are responsible of coordinating the cybersecurity technologies
and operations of an organization.

However, as responsibilities are increasingly delegated to
AI-driven systems, which have increasingly become the pre-
ferred option within SOCs worldwide, an issue of trust and
accountability in these systems arises when operators cannot
comprehend the analytical process and their outcomes. For
example, if a certain AI-driven system does not offer ade-
quate mechanisms for comprehending and justifying automatic

decision-making, technicians might be hesitant to delegate
responsibilities to such systems. This issue is also evident
from a compliance perspective. The risk-based regulation, the
Artificial Intelligence Act (AIA), proposed by the European
Commission regulates AI applications according to different
risk levels, with a special focus on providing the attributes
of transparency, robustness, and resilience, with particular
attention to high-risk use cases [1].

In the last decade, the adoption of AI systems, especially
those employing Machine Learning (ML) has experienced
exponential growth, thanks to the surge of novel algorithmic
techniques and hardware capabilities. In detail, ML is the
field of Artificial Intelligence centered on the development
of algorithms capable of extracting value from data. These
advancements have enabled technicians to analyse large data
flows using cost-effective methods, e.g., Gradient Boosting
or Deep Learning algorithms. Paradoxically, these algorithms
do not always inherently offer a mechanism for transparency,
which is crucial for understanding what has the algorithm
learned and for providing an explanation for each prediction.
To this end, the research area of Explainable Artificial Intel-
ligence (XAI) relies on proposing interpretable methods, but
also on utilizing proxies when the preferred algorithm lacks
inherent explainability [2].

Our proposed data-driven framework for enterprise security
has been successful for computing risk exposition. Currently in
production, it offers an out-of-the-box ML-based system that
calculates the exposure of each entity within the infrastructure
to a specific threat [3]. To achieve this, our tool utilizes
different phishing campaigns and analyzes incidental infor-
mation, enabling it to learn the behavior of users who have
been exposed through a supervised approach. The framework
propose mitigation and countermeasures with the objective of
proactively reduce the attack surface of the entities. In terms
of usability, the AI-driven system is restricted to provide a user
score (exposition metric) for each entity without providing any



augmentation, allowing the stakeholder to justify and better
comprehend the outcome of the system.

Fig. 1. The risk assessment framework generates a risk exposure score,
which is further enriched through the utilization of an explainability proxy.
This augmentation facilitates the elucidation of risk behavioral patterns within
entities, thereby enabling automated mitigation recommendations for the
Security Operations Center (SOC) team.

In this article, the vision and desiderata of a usable ex-
plainability proxy in the cybersecurity domain are explained.
Specifically, this explainability proxy has been tailored for
successful integration into our risk assessment framework.
Furthermore, we explore how stakeholders, particularly the
Security Operations Center (SOC) team, can derive benefits
from these techniques. We detail the explainability procedure
implemented within the depicted framework, which empowers
us to enhance the exposition metric proposed to stakeholders
with explanations. The proposed proxy has been meticulously
designed, taking into account the specific requirements of the
domain. This design results in high-fidelity explanations that
not only provide a reliable justification for automated decisions
and countermeasures. In summary, the main contributions of
this work are as follows:
• Usage of evaluation metrics: We propose to leverage the

current advances in the field of explainability by employ-
ing evaluation metrics for the systematic assessment of
explanations.

• Organic interface: In contrast to other proposed AI-driven
approaches that build interfaces using out-of-the-box ex-
planations, our proposal leverages evaluation metrics to
generate more organic explanations in the cybersecurity
domain.

• Real use case verification: The proposed explainability
proxy is tested within a real-life scenario, involving
cybersecurity experts who assess the viability of our
methodology.

The remainder of this article is structured in the following
manner: Section II provides a comprehensive analysis of the
state of the art in explainability and related work within
the cybersecurity domain. Section III provides a detailed
introduction to our risk analysis framework, and Section IV
introduces the proposed explainability proxy. Finally, Section
V concludes the paper with a discussion and outlines directions
for future research.

II. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) IN
THE CYBERSECURITY DOMAIN

Explainable Artificial Intelligence (XAI) is formerly de-
scribed as the science of comprehending what a model did
or might have done [4] [5]. To comprehend machine learning

models and provide explanations, different XAI approaches are
proposed. These approaches are categorized based on whether
the models inherently provide a mechanism for explanation
(Interpretable-by-design models) or whether Model-Agnostic
methods offer an explanation even when the model lacks an
inherent approach to be explained [6] [7]. In the cybersecu-
rity domain, comprehending the outputs of machine learning
models is foundational. Cybersecurity analysts require well-
justified information to make informed decisions, especially
considering the critical nature of the information within the
SOC, which can potentially impact human lives or result in
substantial financial losses.

While various methodologies for explainability (see section
II-A) and domain specific use-cases exist in the literature
(see section II-B), a common framework to systematically
asses explanations has yet to be established. In the technical
report proposed in [8], the authors delve into the desiderata of
explanations within this domain following a meticulous anal-
ysis of the technician requirements. The primary desiderata
in this context revolve around the necessity to incorporate
temporality and abnormality awareness. Explanations should
have the capability to capture the temporal aspect, allowing
for the effective analysis of threat actor behavior and various
adversarial tactics over time. Furthermore, the explanations
provided to end-users should exhibit human-awareness, offer-
ing a quick and user-friendly mechanism for obtaining results
from AI-driven systems. Lastly, there is a need for quantifying
explanations to comprehend their quality and ascertain levels
of uncertainty.

A. Methods for XAI

The explainable methods are commonly categorized into
intrinsically interpretable models and post-hoc interpretation
methods. The distinction between these categories centers
around when the explanation is achieved. Intrinsically inter-
pretable models builds the interpretations during the learning
stage, whereas post-hoc interpretable models generate expla-
nations after the training process has been completed.

• Intrinsic explainable methods are characterized by the
inherent capacity of the algorithms to provide an ex-
planation. A prominent example of such a method is
the decision tree algorithm, whose tree-based architecture
allows the extraction of explanations in form of rules.
Another example of intrinsic methods are the statistic
analysis, which employ visual techniques to understand
the learning stage [9] [10].

• Post-hoc methods are model-agnostic approaches that
employ proxy techniques to approximate both the learn-
ing stage and the predictions of the machine learning
model, thereby producing an explanation. See, for in-
stance, [11] [12] or [13]. The main types of post-hoc
methods are the visualization methods, which aim to
generate visual insights of the learned model; knowledge
extraction methods, which extract systematic information
from the model; influence methods, which estimate the



importance of the features; and example-based explana-
tions, which explain the model by choosing particular
samples of the dataset and their corresponding outputs
[14]. (1) Visualization methods are based on graphical
methods to interpret the models. For instance, the Partial
Dependence Plot (PDP) is a visualization method that
calculates the marginal effect between the target and the
features in supervised learning models. Another popular
visualization technique is surrogate models. These models
are based on a proxy that mimics the output of the com-
plex model and is used to comprehend predictions. LIME
and SHAP are two popular surrogate techniques that
offer both local and global explanation. (2) Knowledge
extraction methods are target to understand the internal
structure of complex models allowing them to provide
insights into the models as explanations. The main dis-
advantage of this type of method is its dependency on the
model studied. Rule extraction is a common approach in
Deep Neural models where the network is decomposed
into multiple decision trees, and the concatenation of
rules is used as an explanation. (3) Influence methods
modify the input instances of the models and observe
the effect on the output. For instance, feature importance
measures the impact of each feature on the predictions
of a complex ML model by perturbing the values of the
features and observing the prediction error. (4) Example-
based methods select representative instances from the
dataset to create explanations.

B. XAI in the Cybersecurity Domain

Explanations in the cybersecurity domain are gaining in-
terest since they provide the desired transparency capabilities
to cybersecurity appliances using Artificial Intelligence as
the core. In the recent years, the number of surveys within
Cybersecurity and Explainability has been extensive, see for
instance the successful surveys [15] and [16]. Numerous
articles employ post-hoc methods such as LIME and SHAP
to explain the decisions made by models in the cybersecurity
domain. For example, in the intrusion detection field, [17] uses
SHAP values to create both local explanations, pertaining to
individual samples, and global explanations, providing insights
into the model’s overall behavior. [18] applies it to for DNS
over HTTP (DoH) protocol intrusion detection, while [19]
uses SHAP values to compare models trained with CICFlow
and NetFlow features. Similarly, [20] uses SHAP to explain
Malicious URL classification and Android Malware detection.
[21] uses both LIME and SHAP to explain the detection
of cryptomining in container clouds. Finally, [22] utilizes
a modified version of SHAP values called Shapley–Lorenz
for cyberrisk management in order to enhance explainability
capabilities.

Furthermore, there are other initiatives that use post-hoc
analysis to provide explanations. For instance, [23] has devel-
oped TRUST XAI, a model-agnostic explainability tool that
has been tested in an IoT environment with both benign and
malicious traffic. Additionally, [24] introduces LEMNA, a tool

that creates a simpler and interpretable model based on a
complex model. This tool was tested in the domain of malware
classification and binary reverse engineering. Finally, [25]
developed a comprehensive framework that not only included a
XAI module but also a data cleaning and an evaluation module
that collects feedback from cybersecurity analysts.

III. OUR FRAMEWORK

Our data-driven framework has achieved success in the
analysis of a large number of entities from a national public
Spanish university. This institution has nearly three thousand
nominal users, including research and academic personnel, and
produces a flow of 250 GB of logs per day. The objective of
the framework is to identify users within the infrastructure
at high risk of exposure to potential threats by determining
their exposition risk. Despite other data-driven approaches
that are based on detection (see for instance [26], [27] or
[28]), the objective of the framework is prevention, allowing to
determine which users have a behavior which exposes them to
a specific threat allowing the SOC operator to take preventive
actions and proposing orientated countermeasures to the users.

Fig. 2. The risk exposition analysis framework is built following a CRISP-
DM methodology

The proposed framework follows the CRISP-DM archi-
tecture, which delineates the fundamental stages of com-
mon data-driven applications. The initial two steps, Business
Understanding and Data Understating, involve an internal
assessment of stakeholder requirements and a comprehensive
understanding of the data. Concerning to these initial stages,
the framework receives data collected from the corporate Secu-
rity Information and Event Management (SIEM) system. This
data source includes raw multi-modal application logs from
different entities, including information from DNS, HTTP,
SSL, and SMTP application logs. The next step is Data
Preparation. Towards the end of the analysis, time windows
(TW ) are defined to capture the behavior of a user at a specific
time interval T1 - T0 (see section III-A). The subsequent steps,
namely Modelling and Evaluation stages (see sections III-B
and III-C), focus on generating a machine learning model.
In particular, a binary classification approach is used, utilizing
labels from different phishing campaigns. Finally, the model is



deployed (see III-D), where the framework facilitates ranking
high-risk users. This enables stakeholders to implement ap-
propriate countermeasures and long-term defensive strategies.

A. Data Preparation - TW Generation

To manage the vast volume of raw multi-modal application
logs, the data is structured into users and their respective
entities. A user, denoted as u, is defined as any individual using
the university network infrastructure and possessing an email
identity. For the scope of this project, only Administrative and
Personnel staff are considered (Eq. 1).

U = {u1, u2, u3, . . . , un} (1)

An entity e refers to any device connected to the network
using an IP address, such as workstations, smartphones, print-
ers, or routers that have been discovered in the network. For
our case, we consider only workstations and smartphones, as
data from the rest of the devices is unavailable (Eq. 2).

Ei = {ei1, ei2, . . . , eimi} (2)

Where mi is the number of entities for user ui. In order
to extract useful information for each entity, we group their
application logs into time windows of 10 minutes and calculate
a set of statistical features based on ratios and percentages for
each time window (Eq. 3).

TWij = {twij1, twij2, . . . , twijki
} (3)

In detail, the features computed for each TW are catego-
rized into five different groups: DNS Features are computed
with DNS logs generated when using DNS servers. For
instance, when an entity wants to access to a website, it
first has to resolve the domain name to an IP through a
DNS query. HTTP Features are computed with HTTP logs.
These logs mainly originate from activities related to web-
based applications. SSL Features are computed with SSL logs
generated when using encrypted SSL connections, containing
information about the encryption process. SMTP Features are
computed with SMTP logs. These logs are generated when
using the SMTP protocol that is related to emails. Time-related
features. These features are related to the timing of the logs,
such as whether the logs were generated during working hours
or not.

B. Modelling - Supervised Approach

The data used to train our model consists of the various time
windows that have been calculated. Two distinct models are
created for smartphones and workstations, although it could
be extended to include other entities in the taxonomy in the
future. The objective of these models is to perform binary
classification for each time window, allowing the prediction
of production data either ”risk” or ”risk-free” behaviors in
(Eq. 4).

RiskModel =

{
fworkstation : Xworkstation → Yworkstation

fsmartphone : Xsmartphone → Ysmartphone

(4)
Where f refers to the classification model used, and repre-

sents X the time window with binary labels referenced as
Y . Following a no-free-lunch theorem, our modelling step
involves the testing of different Machine Learning models.
For instance, the models have been evaluated using the Deci-
sion Tree algorithm (DT) [29]. The DT is an interpretable
classification algorithm, thus allowing the construction of
explanations by analyzing the decision path. Other classi-
fication models taken into account include Support Vector
Machines (SVM), Gradient Boosting algorithm and Random
Forest (RF) [30] [31]. SVM finds a hyperplane that better
classifies the different samples. XGBoost is a highly popular
ML algorithm across the community for its versatility in
tackling classification and regression problems; the algorithm
is grounded in gradient boosting tree models [32]. Finally,
the last algorithm taken into account is the Random Forest
classification algorithm, which creates an ensemble model by
combining the output of several decision trees to produce the
final output.

C. Evaluation - Phishing Campaigns

To train the individual supervised classification models for
the Risk Model, we require distinct labeled datasets. For this
purpose, we executed three different simulated email phishing
campaigns involving a portion of the university staff. The
phishing campaigns involved the creation of various fake
emails embedded with tracking elements, which enabling us
to monitor user interactions with the emails. This interaction
data was then used to label users as compromised or not
based on their engagement with the phishing email. In detail,
a group of cybersecurity experts elaborated the emails using
open-source intelligence tools (OSINT) and publicly available
information about the target population to avoid design bias.
The first two phishing campaigns aimed at gaining access.
The emails asked the user to enter a third-party services,
exposing their credentials. Campaign I consisted of requesting
login information from a popular e-commerce account, and
Campaign II requested login information from their university
account. Campaign III focused on malware. The email had a
spreadsheet attached with an obfuscated macro. Table I the
results of the campaigns can be found. For this article, only
the Campaign II is used as it is the most successful campaign.
From Campaign II, the Open and Click users are considered as
risk-free users. Whilst the Engagement users are considered in
risk, the rest of the phishing campaign population is not used
in the training of the model, as we do not know how they
interacted with the email. Once the labels are extracted, the
different entities related to each user and their time windows
are labeled, creating a realistic dataset labeled with phishing
information.

Once the dataset is created, it is split into 20% validation,
20% test, and 60% train. With the training dataset, four



TABLE I
RESULTS OF PHISHING CAMPAIGNS I-III. THE OBJECTIVE OF CAMPAIGN
1-2 IS GAIN ACCESS. WHILE THE OBJECTIVE OF THE LAST CAMPAIGN IS

TO RUN THIRD-PARTY EXECUTABLE.

Campaign-ID Population Open Click Engagement Hit-rate
Campaign I 578 156 77 18 3%
Campaign II 377 87 47 67 17%
Campaign III 410 124 - 15 3%

different models are trained using DT, RF, SVM, and Gradient
Boosting (XGBoost) algorithms for both smartphones and
workstations. A grid search approach has been used to find the
best parameters for the models. In Fig. 3, the four different
Receiver Operating Characteristic curves (ROC curves) of the
different models are shown. ROC curves are a very useful
visual tool for binary classification to asses the performance of
a model. ROC curves plot the True Positive Rate (TPR) (Eq.5)
against the False Positive Rate (FPR), allowing to visually get
an insight of how well each model distinguishes between the
two classes (Eq.6).

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + TN
(6)

From the ROC curves, we can calculate the Area Under the
Curve (AUC) as a metric for assessing model performance.
A higher AUC indicates better discriminative ability of the
model. In this project, AUC is used for model selection.
Among the models evaluated, the XGBoost algorithm stands
out with the highest AUC, especially in the workstation model.
In the smartphone models, it is the second-best performer,
very closely to Random Forest model (RF). Thus, XGBoost
is selected as the primary model. As observed earlier, while
Decision Tree (DT) models are transparent and inherently
interpretable (white boxes), they lack complexity compared to
XGBoost, Support Vector Machine (SVM), or Random Forest
(RF) models. Consequently, DT models achieved the lowest
AUC among all the proposed models.

D. Deployment - Risk Assessment

To assess the risk of a user, production data is utilized, com-
prising the application logs of users who were not part of the
phishing campaigns. This production data is preprocessed into
time windows (TW ), and the previously defined and trained
Risk Model is applied to compute the predicted accuracy. From
now on, the models used are the XGBoost models, represented
as fworkstation and the fsmartphone. Both models are designed
to perform binary classification of TW , meaning that we can
assess if a user is at risk in a certain TW . Moreover, the
models also provides the estimated probability of belonging to
each class. In this case, as it is binary classification, it returns
the probability of the time windows to belong to the class
risk. The risk exposition of the user can vary depending on
the time window. To analyze a user’s risk, several consecutive

Fig. 3. ROC curves for workstation and smartphone models.

TW can be grouped. Given a period of time with a set of
consecutive TW Eq. (7) is applied.

score =
n

max
i=1

(
mi
max
j=1

fk(eij)

)
(7)

Which means that the score value for a user is the maximum
predicted probability of all the TW within a given period of
time of the user.

IV. XAI POWERED FRAMEWORK

To enhance the explainability capabilities of our risk as-
sessment framework, we propose a two-step methodology
aimed at constructing an automated procedure for assessing
explanations. The first step consists of manually identifying
behaviors within local explanations from a validation set. This
process aims to establish a knowledge database of ground
truth explanations employing Shapley values and mapping the
explanations to concrete mitigations and countermeasures, as
outlined in Section IV-A. The second stage of the explainabil-
ity proxy involves the systematic assessment of production
data. This assessment utilizes faithfulness metrics that enable
a comparison between the production data and the previous



ground truth explanations, resulting in a score with the align-
ments that enhances the transparency of the final risk score
delivered to stakeholders (refer to Section IV-B).

Fig. 4. The proposed explainability proxy comprises a two-stage approach.
In the initial stage, diverse ground-truth explanations are labeled to construct
a knowledge database. The second stage involves the systematic assessment
of explanations using faithfulness metrics.

A. Explanation Assessment

In order to explain the predictions made by both Work-
station and Smartphone binary classification models, SHAP
is used. Specifically, the algorithm enables providing a local
explanation, based on determining the most contributing fea-
tures, for the different TW of a user included in the score.
The SHAP (SHapley Additive exPlanations) algorithm draws
upon the principles of Shapley values, which stem from the
realm of game theory. Shapley values serve as a foundational
concept in computing equitable distributions of rewards among
participants in a cooperative game. SHAP adapts this concept
to attribute contributions of each feature to a specific prediction
[33] [6]. In detail, the SHAP method, given a model f and an
input x, approximates the output to an explanation model g:

f(x) = g(x′) = φ0 +

M∑
j=1

φjz
′
j (8)

Where g represents the explanation model (the additive
feature attribution method), M represents the number of input
features, and φ is the Shapley estimation representing the
contribution of each feature. Specifically, the estimation is
based on computing N models for all feature subsets and
assigning an importance value of including the feature in the
final model prediction.

Figure 6 includes diverse explanations collected from the
phishing campaigns. The process of labeling the explanations
has been performed by plotting the local explanations (top
k-Shapley values), and a team of cybersecurity engineers
manually asseses the explanations occupying the top positions
in the score. Furthermore, Table II contains a comprehensive
list of the features that appear in the preceding figure. As
follows, the manual assessment for explanations A1-A4 gener-
ated using the Model Workstation and the Phishing Campaign
II is included.

• Explanation A1 (predicted probability - 0.72%):
This explanation contains two interesting features
in the top contributing features. In detail, the
dns recursion desired ratio feature might indicate
that the entity is making a query requiring a DNS
resolver to perform recursive resolutions by querying
authoritative DNS servers. On the other hand, the
dns qtype obsolete ratio refers that the entity is
performing DNS query types that are no longer active
or deprecated due to security concerns or new security
protocols.

• Explanation A2 (predicted probability - 0.72%): One of
the most contributing features describing a different be-
havior is the non working days http, which indicates
that the entity has activity outside working hours. This
could represent that users use their corporate laptop or
smartphone for personal uses or keeps the device always
connected.

• Explanation A3 (predicted probability - 0.64%): The most
notorious features in this explanation are the usage of
applications or services using a deprecated protocol (SSL
version 1.1). This behavior might indicate that the user is
using deprecated software or applications, which might
be affected by vulnerabilities.

• Explanation A4 (predicted probability - 0.83%): The final
proposed explanation includes a high contribution of the
http feature request body len ratio feature, which
might indicate that the entity usually downloads a high
amount of information from web servers.

After the assessment of local explanations, it is possible
to align specific countermeasures and long-term strategies to
reduce the exposition risk in the case that a given user is
exposed to the behaviors identified in A1-A4, which are root
causes of phishing cases. Presented below is a repertoire of
mitigation measures for explanations A1 to A4.

• Remediation R1 (matching explanation A1): Review
DNS configuration to avoid vulnerabilities and check for
software updates.

• Remediation R2 (matching explanation A3): Identify the
software and the reasons why a deprecated protocol is
being used. Check for updates and force applications to
use TLS v1.2 or v1.3.

• Remediation R3 (matching explanation A2 and A4):
Create an awareness security policy to remind company’s
assets (e.g., laptops) should be used to access and down-
load only trusted resources and use them only when
necessary (i.e., during working hours).

1) Considerations: In this project, the usage of SHAP is
proposed due to its stability and model-agnostic explanations.
Also, SHAP is particularly well-suited for explaining predic-
tions of tree-based algorithms like XGBoost (the algorithm
used in the Risk Assessment Framework). Furthermore, this
popular library allows us to compute local explanations.



Fig. 5. For each user entity, the predicted probability is calculated for each TW in the production data, and the alignment is computed using evaluation
metrics. The TW corresponds to a time period of two consecutive days (Feature Agreement, k:5)

TABLE II
SUBSET OF FEATURES THAT ARE THE MOST CONTRIBUTING FEATURES IN EXPLANATIONS A1-A4 AND B1

Feature Description
http common ua ratio Mean of popular and expected User Agent values in HTTP events - not included in the initial feature list
http response body len ratio Mean of response body length event in the sequence. A high value could indicate the entity is downloading

data.
http request body len ratio Mean of request body length event in the sequence. A high value could indicate data exfiltration.
http status 200 ratio Ratio of HTTP events with status code 2xx indicating success

mean interlog dns time Mean value of the time between two consecutive logs in the TW
dns qtype used ratio Ratio of query types used in DNS events
dns qtype obsolete ratio Ratio of query types which are label as obsolete
dns common udp ports ratio Ratio of common UDP ports used. Unusual port numbers could indicate malicious activity
dns recursion desired ratio Ratio of DNS events with recursion flag (RD) set

mean interlog ssl time Mean value of the time between two consecutive SSL logs in the TW
ssl version ratio v10 Ratio of events using SSL version v1.1
ssl interlog time 0.001 Time between two logs with less than 0.001 seconds

non working days http Boolean set to true when HTTP activity is generated by an entity in non working days
non working days ssl Boolean set to true when SSL activity is generated by an entity in non working days

B. Explanation Evaluation

The systematic evaluation of explanations is conducted
through the utilization of faithfulness metrics. These metrics
were introduced in the works of [34] [35]. Our proposal is
based on utilizing faithfulness metrics, enabling a systematic
comparison of the production explanations with the ground
truth explanations knowledge base. Specifically, the objective
of using these metrics is to provide a quick mapping between
the ground truth information, thereby reducing the analysis
efforts in production.

In detail, the evaluated disagreement metrics are defined as
follows: the Feature Agreement metric (9), which is based on
determining the shared group of features between explanation
E in the production data and explanation G in the ground
truth data within the top k positions. The Rank Agreement
metric (10) resolves disagreements by determining matching
features between the two explanations that share the same
symbols. Lastly, the Signed Rank Agreement metric combines
both feature and rank agreement to determine disagreements
between explanations based on both rank and sign.

FeatureAgreement(E,G, k) =
|top(E, k) ∪ top(G, k)|

k
(9)

∪s∈S |s ∈ |top(E, k) ∪ top(G, k) ∧ rank(E, k) = rank(G, k)|
k

(10)

∪s∈S |s ∈ |top(E, k) ∪ top(G, k) ∧ sign(E, k) = sign(G, k)|
k

(11)
The process of evaluating explanations is illustrated in

Figure 5. For each entity, post-hoc explanations are computed
using the SHAP procedure as explained previously. Each
timestamp (TW ) included in the validation dataset is assessed
using the symbols stored in the Ground Truth Database, with
a fixed value of k for each assessment. In the diagram,
aligned symbols are represented using blue and red vertical
lines corresponding to aligned symbols A3 and A4, which
correspond to the usage of applications or services employing
deprecated protocols and a high volume of downloads from
web servers, respectively. From the proposed visualization,
it is evident that users frequently employ a deprecated TLS
protocol, primarily from the workstation (Entity A2). Addi-
tionally, traces from smartphone devices (Entity A1) are also
observed. Furthermore, we propose a general overview in the
form of a ranking system that provides stakeholders with
an organic interface, offering suggestions for mitigating risks



Fig. 6. Local Explanations of different TW.

Fig. 7. An illustrative example of the produced risk score. For each prediction,
the alignment is computed using the Ground Truth Database.

among users who show strong statistical evidence (risk) of
being compromised in a threat campaign. Figure 7 includes an
example of the top k users for a specific threat campaign. For
each user positioned at the top of the ranking, we include the
following information: the risk (mean predicted accuracy of all

the user’s entities), the symbol that corresponds to the most
frequent symbol occurrence, the ’average f’ value describing
the frequency, and finally, the proposed mitigation. In this
article, the proposed mitigations are simply the mapping of
symbols to mitigation strategies, as detailed in Section IV-A.

1) Considerations: Improving the Groundtruth Explana-
tions Knowledge System: After analyzing the diagram pre-
sented in Figure 7, it becomes evident that there are regions
with a high predicted probability for the two entities that
lack an aligned symbol. This phenomenon arises due to the
limited number of symbols in the Groundtruth Explanations
database. This is due, for the scope of this article, we have
constructed a database consisting of only four distinct symbols,
each associated with three different mitigation approaches. The
labeling approach involves selecting random explanations from
the set TW with a high predicted probability. To iterative
enhance the knowledge system, we propose that stakeholders
select explanations with high accuracy and manually assess
them using the procedure described in Section IV-A. Figure 8
illustrates the second explanation for EntityA2, which has a
predicted probability of 0.76 in identifying behavior associated
with phishing.

Upon a thorough analysis of the provided explanation, it is
discerned that the most influential factors contributing to this
prediction are the utilization of common UDP communications
for data transmission and the signal code ”200,” signifying a
successful status response from an HTTP protocol communi-
cation. Under this scrutiny, it is concluded that the analyzed
explanation does not contain any instances of non-legitimate
behavior. Nevertheless, the presence of these symbols could
be attributed to model bias, thereby offering opportunities for
improving classification models.

Fig. 8. Local Explanation of a TW

2) Considerations: Limitations on the Metric Selection:
In this study, we empirically evaluate the three proposed
metrics. The signed agreement was the metric which best
matches our scenario using a fixed k of 5. To elaborate
further, the first metric, known as Feature Agreement, focuses
solely on determining if two features align in the highest
score. However, within the cybersecurity domain, whether
a feature contributes positively or negatively to constructing
an explanation can carry distinct implications. To this end,
the Sign Agreement metric maintains this aspect, offering a



more organic comparison between two explanations. Lastly,
the signed-rank agreement metric was excluded from consid-
eration as stakeholders did not observe a clear distinction in
the weightings of top positions within an explanation.

V. CONCLUSION AND DISCUSSION

In this study, we propose the utilization of disagreement
metrics for the systematic assessment of the fidelity of expla-
nations, as demonstrated through a successful use case in the
cybersecurity domain. As expected, the usage of faithfulness
metrics could be beneficial to reduce fatigue in assessing ex-
planations, as the the proposed methodology enables the align-
ment with known behaviors. Furthermore, we believe that this
mechanism allows security professionals to share the labeled
behaviors amongst SOC teams in a threat-sharing fashion. For
instance, the labeled exposition behaviors could be shared,
allowing enterprises to provide prevention capabilities in cold
start configurations. Moreover, the proposed approach has
the potential to significantly enhance threat behavior profiling
by systematically evaluating explanations. This can facilitate
Tactics, Techniques, and Procedures (TTPs) correlation from
the MITRE ATT&CK framework and enable the construction
of kill-chains to provide a comprehensive understanding of
attacker strategies. This represents a promising step towards
threat prediction and hunting.

Regarding the proposed explainability proxy, the future
work of the framework hinges on determining efficient heuris-
tics for generating ground-truth explanations. On the other
hand, while the proposed metrics facilitate comparisons be-
tween ground-truth explanations and production explanations,
these comparisons are rigid and primarily based on the charac-
teristic of relevance in top-ranking positions. We believe that
these metrics could be extended to incorporate uncertainty and
establish a dynamic scoring system based on the relevance of
the explanation.
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