
SemanticPhish: A Semantic-based Scanning System for Early Detection of Phishing
Attacks

Qian Cui, Guy-Vincent Jourdan, Gregor v. Bochmann
University of Ottawa,

Ottawa, Canada
cuibuaa@gmail.com,{gjourdan, bochmann}@uottawa.ca

Iosif-Viorel Onut
IBM Centre for Advanced Studies

Ottawa, Canada
vioonut@ca.ibm.com

Abstract—In the fight against phishing attacks, time is of the
essence. Each individual attack is usually short-lived, but many
people are still victimized during that short timeframe. To curb
the problem, one way is to detect the attack shortly after the
site is deployed, before victims have a chance to access it.
Monitoring every new URL on the internet clearly is not a
practical option, but monitoring sites that have a good chance
of hosting an attack can be done. One of the ways to spot such
a site is to monitor domain names. It is known that a growing
number of phishing attacks are hosted by the attacker [1],
[2], using their own domain names. Therefore, domain names
might help spotting likely attacks. In this paper, we look at the
following questions: can we currently tell apart domain names
used in phishing attacks from other domains? If so, can we
train a system to automatically detect these domains? And
can such a system find attacks before they are being reported
by victims? We show that the semantic of the words used by
many phishing domains is different from the semantic of the
words used by benign domain names, and that we can train a
classifier to reliably flag these domains. We propose a system,
SemanticPhish, which efficiently monitors these domains and
is able to detect many phishing attacks without requiring the
attack to be reported first. SemanticPhish can find attacks
several days before Google’s “safe browsing” starts flagging
them.

1. Introduction

A “phishing” site is a web site impersonating another,
legitimate web site, put together by a “phisher” in order to
entice end-users to disclose sensitive information meant for
the impersonated site. The current anti-phishing solutions
mainly focus on “late” detection: the URL of the attack has
to be disclosed to the detection system for it work. This
means there is a delay between an attacker launching an
attack and the attack being detected, and an opportunity
for the attack to be effective for some time before being
detected. According to a the Anti-Phishing Working Group
(APWG) [3], phishing attack instances are blocked after
about 10 hours in average. Although this is not long, it
still provides a window of time for attackers to collect
information.

One way to detect some phishing attacks at an earlier
stage is to start to find out about the attack before it is
advertised to the victims. One way to achieve this is to
monitor web sites “blindly” in order to find new attacks.
This is however unpractical, given the large number of
domain names being activated every day. To make this
approach more practical, we need a way to narrow down
the range of domains being monitored, and focus on the
ones that are much more likely to eventually host an attack.

In this paper, we explore the possibility to use the seman-
tics of domain names, and the semantic differences between
domains used to launch phishing attacks and legitimate
domains names to detect sites that are worth monitoring.
Note that phishing attacks can be hosted by the attacker on
a domain that they own, which is the situation of interest
to us here, or they can be hosted on a compromised server,
in which case the domain name is not related to the attack.
According to [1], [2], a growing number of phishing attacks
are hosted by the attacker, and currently represent 38 to 49%
of the attacks. To avoid confusion, in the following we refer
to a phishing domain owned by the attacker as a malicious
domain.

We look at the following research questions:

• RQ1: Is there a noticeable difference in the strings
used to create malicious domains when compared to
legitimate ones?

• RQ2: If the answer to RQ1 is true, then can we
train a system to distinguish malicious and legitimate
domains with a reasonable accuracy?

• RQ3: If the answer to RQ2 is true, then can such a
system be used to effectively detect some phishing
attacks significantly earlier than they are today, in
particular before there is any evidence that the attack
itself is active?

To answer RQ1, we propose a model which creates vec-
tors based on the semantics of the words used in malicious
and legitimate domain, and show that these vectors can be
separated by hyperplans in the vector space.

To answer RQ2, we train a machine-learning model
using the vectorization of RQ1 and achieve an accuracy of
almost 84% despite working with a noisy dataset.

To answer RQ3, we propose SemanticPhish, a system
that prioritizes the domains that are most likely malicious
in order to monitor them. We show that SemanticPhish
can indeed detect attacks without being provided any URL.
We also compare our detection results with Google’s live
update blacklist service: Safe Browsing. Our results show
that around 70% of the attacks detected by SemanticPhish
are still not reported by Google Safe Browsing 5 days after
SemanticPhish’s detection.

We stress that the goal of this research is not to propose
a new, general phishing attack detection system. As already
mentioned, not all phishing attacks occur on a domain
owned by the attacker. Many attacks are hosted on domains
that have been compromised, or on general hosting sites.
And attacks using domains owned by the attacker do not
always try to lure victims by using semantically loaded
words in the URL, and even those who do sometimes use
the path and not the domain name to do it. What is more,
some legitimate domains also use similar words. The goal
of RQ1 is to study whether we can use word semantics
to flag some of the phishing domains that do fall into the
category of interest to us, not to flag every phishing domain,
let alone every phishing attack. RQ2 and RQ3 will tell us
if it is worth monitoring these particular domains to detect
phishing attacks early.

The paper is organized as follows: In Section 2, to
answer RQ1, we introduce our domain words model and
conduct a series of analyses comparing malicious and legit-
imate domains. Then in Section 3, we discuss three machine
learning models that can be used to identify malicious
domains, therefore answering RQ2. The discussion about
SemanticPhish is presented in Section 4. We apply Seman-
ticPhish on a live stream of domain names log to answer
RQ3. We provide an overview of the literature in Section 5
before the conclusion in Section 7.

All of the source codes and the data used in this paper
can be found at http://ssrg.site.uottawa.ca/SemanticPhish.

2. Domain Words Model (RQ1)

We first answer RQ1: Is there a noticeable difference in
the strings used to create malicious domains when compared
to legitimate ones?

In order to convince a victim to respond to a phishing
attack, an attacker not only creates phishing pages that
mimic legitimate pages, but often also uses an URL that
appears to be legitimate. When the phisher owns the domain
name hosting the attack, then that domain can also be used
to convey some information about what the site is supposed
to be about. When this is the case, attackers usually use one
of two strategies when choosing malicious domain names:
they can be related to the target of the attack, or they can
be related to the content of the attack. The target-related
domain uses similar words or homographs of the target
domain, e.g., “apple-id.xyz” or “äpple.com”. When it comes
to the content-related domain name, we can rely on the fact
that phishing attacks usually target social network and e-
commerce sites. Therefore, words used in phishing domains

that are meant to convey the content of the site are biased
towards a specific corpus of words which is different from
regular websites. This provides an opportunity to identify
these phishing domains through the semantics of the words
used to construct these domain names.

Our approach is to combine natural language process-
ing and a model created by machine learning to build a
word model which is able to “understand” the semantics
of domain names. We proceed in three steps: the domain
canonicalization, the words parser, and finally the words
vectorization. Figure 1 illustrates this with the domain
UpdatεYourÀccθunt.ga.

2.1. Domain Canonicalization

The first step is the domain canonicalization. The so-
called homograph attacks [4] use visually confusing text
rendering to create domains that can be easily misread by
the victim and confused for something else. In our case, we
use the Unicode Technical Report #36 from Unicode Tech-
nical Standard1 to create a characters replacement table and
obtain a domain name with only digit and English letters.
For example, the domain UpdatεYourÀccθunt.ga would be
changed to updateyouraccount.ga.

We then remove the domain TLD as well as some
common sub-domain names, such as www, mail, cpanel,
webmail and webdisk, that do not carry meaningful seman-
tics for the analysis. Since some domains are subdomains
of common host providers such as myshopify, sharepoint
or wordpress, we also remove several of these well-known
second level domains 2. The resulting text is the input to
the Words Parser. The complete list can be found on our
website http://ssrg.site.uottawa.ca/SemanticPhish).

2.2. Words Parser

A straightforward way to extract words from a domain
name would be to use a predefined list of separators such as
“-” and “.”. However, such a method is too restrictive, and
would fail if the domain name consists of multiple consecu-
tive words. In order to effectively split a string into a list of
words, we apply Zipf’s law [5] to infer the words position.
Specifically, Zipf’s law found that occurrence frequency of
a word times its rank in a given frequency table is equal
to a constant which is linearly related to # of words in the
frequency table. Formally, freq(w)∗rw = aN , where rw is
the rank of the word w in the frequency table, and N is the
number of words in the dictionary. The frequency table is
compiled by counting the frequency of words appearing in
a large corpus of text and sorting the words in descending
order by frequency. As an example, Table 1 shows a 10-
word frequency table for a dictionary of 10 words (a = 1).
The higher the rank of a word (lower index) in the table,
the higher the occurrence frequency of that word. Once the
frequency table is compiled, we use dynamic programming

1. http://www.unicode.org/reports/tr36
2. See http://ssrg.site.uottawa.ca/SemanticPhish for the complete list.

Figure 1. Structure of the domain words model

to infer word position. The resulting word list is the one
that maximizes the frequency of each individual word.

Word Frequency rank Occurrence probability
apple 1 10.0
security 2 5
paypal 3 3.3
update 4 2.5
account 5 2.0
your 6 1.6
user 7 1.4
service 8 1.3
verify 9 1.1
lock 10 1.0

TABLE 1. EXAMPLE OF A FREQUENCY TABLE

We first split the domain name into multiple text seg-
ments by using the separator dot (“.”). We then remove
non-alphabetic characters in each text segment and apply
the above words parser to the extracted words. The im-
plementation of our words parser is based on the Python
library [6], which uses a frequency table of over 126,000
“words” created from English Wikipedia. The list of words
extracted from each segment is combined as the input to the
Words Vectorization step.

2.3. Words Vectorization

Word Embedding is a technique that converts a word
into a high-dimensional vector. In our context, we are inter-
ested in the semantics similarity of words. In general, words
with similar meanings will be close to each other in the
vector space. For instance, the words “car” and “truck” have
two similar vectors in the word vector space because they
are instances of the same category. Training such a word
vector model requires very powerful computing resources
and a large collection of texts. We use a pre-trained vector
model provided by the Stanford Natural Language Process-
ing Group3, which has been trained using a large number

3. https://nlp.stanford.edu/projects/glove/

of texts from Internet, including 2.2 million words. We use
the intersection between the list provided by Stanford and
the frequency table of WordNinja to convert domain names
into a list of word vectors.

Another useful feature of word vectorization in our
context is that we can create a vector for a string consisting
of multiple words by adding the vectors of each word of
that string. This provides us a tool to measure the semantic
similarity of domain names by comparing the vectors that
we obtain for these domains: vectors that are similar tend to
be made from domains that use semantically close words.

2.4. Analysis of the Model

2.4.1. Dataset.

In order to test our model, we need two datasets: a set of
malicious domains and a set of legitimate ones. For the list
of malicious domains, we use a dataset that was provided
by PhishLabs4 to the authors of [1]. This dataset contains
almost 10,000 domain names that have been manually cured
and is supposed to contain only malicious domains used in
phishing attacks (see [1] for additional details about the con-
struction and cleaning of this dataset). Note that despite the
cleaning efforts, this dataset of malicious domains still has
some noise and contains a number of legitimate domains.

We created the list of legitimate domain names by
randomly selecting domains ranked between 10,000 to 1
million in Alexa Top 1M5. We chose to exclude the domains
in the top 10K because we needed a source of “normal”
domains which are representative of the average newly
created legitimate website. Moreover, the domains in the
top 10K are most frequently targeted by phishing sites and
thus are not a good training set to extract the legitimate
keywords that are not often used by phishing sites. After
removing duplicates with the same hostname, we ended up
with 9,768 malicious domains and 19,976 legitimate ones

4. https://www.phishlabs.com/
5. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

as our ground truth data. In the following sections, we use
this dataset for various experiments.

2.4.2. Semantic Similarity Analysis.

In order to analyze the semantic similarity between
domains, we build what we call the domain connection
graph. Specifically, we use the cosine similarity as the
metric to assess the similarity between word vectors. If the
absolute value of the cosine similarity between two domains
is more than the empirical threshold of 0.8, an edge is built
in the graph. It is noted that this threshold is only used for
illustration purposes, in order to limit the number of edges
in the visual rendering of the domain connection graph.
Another threshold could have been used. It is not used by
our system and thus does not impact our results. We apply
this strategy to both of our datasets. If a domain has no
connection to any other domain in the dataset, it is dropped
from the graph.

The domain connection graphs of both domain datasets
are shown in Figure 2. The malicious domain connection
graph consists of 5,136 domains (52.58% of the malicious
dataset), whereas the legitimate domain connection graph
only includes 2,992 domains (14.98% of the legitimate
dataset). This indicates that it is much more common for
malicious domains to have some level of semantic similar-
ity with other malicious domains than it is for legitimate
domains. The figure also shows clearly that there are more
clusters in the malicious domain connection graph than in
the legitimate domain one, which suggests that these do-
mains can be detected by looking for clusters of semantically
related malicious domains.

In Table 2, we provide a random sampling of domain
names for the top five largest clusters in both datasets. It
can be seen that the domains in the cluster of the malicious
graph have similar semantics (e.g. domain names related to
security for the first cluster), even though these domains
only share few common words. On the other hand, the
largest clusters of the legitimate domain graph are only
connected because the domains either use exactly the same
word (cluster 2 to 5) or, in the case of the top cluster,
because they use only one letter between digits (the letter “l”
in the case of that cluster), which causes our vectorization
algorithm to group them together.

2.4.3. Domain Words Analysis.

In the above analysis, our results indicate that some
of the malicious domains are created based on a set of
topics, such as “software security” or “account update”.
But it is still unclear whether the words used by malicious
domains are limited to a narrow range. In order to answer
this question, we build a word-domain graph to analyze
the correlation between words and domains. Specifically, we
first sort words based on the number of domain name they
cover in decreasing order. During this process, we ignore
single characters and stop words. We then draw a cumulative
graph to show the correlation between # of words and # of

domains covered. The result is shown Figure 3. 50% of the
malicious domains are covered by only 0.51% of the words
in that dataset, while 3.33% of the words are required in the
legitimate dataset. The 80% and 90% range is reached after
6.9% and 17.65% of the words in the malicious dataset,
while 17.31% and 36.54% of the words are required in the
legitimate dataset. If we look at the boxplot between # of
words used in phishing domains and legitimate domains, as
shown in Figure 4, we can see that phishing domains tend
to use more words than legitimate domains, although the
median values of both sets are very close

The results indicate malicious domains tend to use fewer
but more semantically similar words than legitimate do-
mains, and thus the answer to RQ1 is yes. It is however still
possible that this model can only capture words that have
been seen in the training set, that is, words that happen to
appear in our ground truth dataset. It is also not clear that
even though the two dataset do not have the same behaviour
when it comes to semantic similarity, that difference can be
used to separate the two sets apart. The latter is the topic of
RQ2, which we address next. We will then be able to address
the former, using the classifier to create a completely new
dataset of malicious domain and show that the set of words
in the newly created malicious dataset is quite different from
the set of word in the ground truth malicious dataset.

3. Machine Learning Classifier (RQ2)

We now focus on RQ2: If the answer to RQ1 is true,
then can we train a system to distinguish malicious and
legitimate domains with a reasonable accuracy?

In order to answer this, we have tested three machine
learning algorithms that are often used for binary classifica-
tion: AdaBoost (ADA), Random Forest (RF), and Support
Vector Machine (SVM). AdaBoost is a machine learning
framework, which combines the results of multiple weak
learners (for example, decision trees) into a weighted output,
therefore improving the performance of the weak learners.
The Random Forest algorithm uses a similar idea: it con-
structs multiple decision trees during the training process.
Each decision tree uses a random subset of features. The
model output is a combination of the results of the individual
trees (e.g. majority voting, mean value etc.). The goal of the
SVM algorithm is to search for the hyperplane that “best”
separates the two classes. Specifically, it first uses a kernel
function to project the input data into a high-dimensional
space, and then searches for the hyperplane with the maxi-
mum distance to the nearest points on each side. Since the
output of standard SVMs is a distance to the hyperplane
rather than a classification probability, we use Platt cali-
bration [7] to transform the distance into a probability over
classes. All these machine learning models are implemented
by scikit-learn6 with the default parameters, as shown in
Table 3. The input of these classifiers is the embedding
vector of domain names discussed in Section 2.3. In other
words, these classifiers tend to identify phishing domains

6. https://scikit-learn.org/stable/index.html

(a) Malicious domain connection graph (b) Legitimate domain connection graph

Figure 2. Domain connection graphs (generated by Gephi using layout ForceAtlas 2)

Cluster label Malicious Legitimate

1
a)service-appteamsupport.support
b)macsoftwareinternalstorageappleerrorcodesecurewaringalert.xyz
c)securesoftwarestorageinternalwaringalertcode0978.xyz

a)2007l04.com
b)l25.ir
c)l495b9.com

2
a)verifyaccount-unlockedsid.tk
b)manageaccount.ga
c)resolvemyaccount-locked.com

a)mygobe.com
b)gowesgo.com
c)letgo.cz

3
a)wellsfargo-43043l33.com
b)wells-fargo-profile-l430l023.com
c)wellsfargocards.net

a)online4.love
b)sudonline.sn
c)onlinevsem.ru

4
a)securitycentre-appleid.com
b)applehomesecure.com
c)appleid-fraud-operations.com

a)pro.com
b)date-pro.com
c)tspro.com.br

5
a)service-account-billing-information.com
b)recoveryidinformation.com
c)security-informationpayment-apple.com

a)itsfree.club
b)gofreeapp.net
c)freeexe.net

TABLE 2. EXAMPLE DOMAINS IN LABELED CLUSTERS

and legitimate domains by learning semantics meaning from
word embedding.

Model Hyperparameters

AdaBoost base estimator=DecisionTree, n estimators=50,
learning rate=1, algorithm=SAMME.R

Random Forest n estimators=10, criterion=gini

SVM
C=1.0, kernel=rbf, degree=3, gamma=auto deprecated,
coef0=0.0, shrinking=True, probability=False, tol=0.001,
cache size=200

TABLE 3. MODEL HYPERPARAMETERS

We compare the performance of these three models, and
list our results in the following section.

3.1. Classifier Comparison

We first compare the results between the three classifiers.
We apply a 4-fold cross validation, and report the average of
the results in Table 4. It can be seen that the SVM classifier

yields the best accuracy (83.96%), and the RF classifier
yields the best false positives (1.15%).

Model Accuracy False Positive
AdaBoost
(ADA) 78.01% 12.66%

Random
Forest (RF) 81.32% 1.15%

Support
Vector Machine (SVM) 83.96% 3.05%

TABLE 4. COMPARISON BETWEEN THREE CLASSIFIERS

In order to further compare the performance between
these three classifiers, we draw the Receiver Operating Char-
acteristic (ROC) curve, which shows the relation between
true positives against the false positives at various threshold,
and use the Area Under The Curve (AUC) to evaluate the
performance: the greater, the better. The result is shown
Figure 5. We can see that the SVM classifier performs

Figure 3. Word-domain Graph

Figure 4. Word Boxplot

better than the other two models, with a relatively high AUC
(0.88). In addition to performing better, SVM also provides
a more natural interpretation of the score. In our case, for
malicious domains, the further away from the hyperlane the
sample is, the higher the score. The opposite is true for
legitimate domains: the further away from the hyperplane,
the lower the score. Therefore, in the following experiments,
we use SVM as our classifier.

Note that the results are far from perfect, the best accu-
racy being only around 84%. This is in fact to be expected:
what we are trying to detect is some distinguishing features
in the semantics of the words used to create malicious
domain names. What we show is that the vast majority of
these domains do exhibit such detectable characteristics. Of
course, not all malicious domains will have these charac-
teristics, and therefore we cannot expect such a classifier to
find all malicious domains.

Figure 5. ROC of three classifiers

3.2. Flexibility of the Domain Words Model

As mentioned in Section 2.4.3, it is possible that our
model can detect domains that use words appearing in
our training set, but fail to recognize words with similar
semantics which it has not seen before. In order to find out,

we compile a dataset of 47,876 unique phishing domains
that have been collected from the community-driven portal
PhishTank7, the cloud-based threat intelligence sharing plat-
form IBM X-Force8, and the phishing intelligence analysis
platform OpenPhish9 between January 1, 2016 and January
1, 2018. These phishing attacks contain a mix of malicious
and compromised domains. We applied the SVM classifier
obtained from our initial dataset as described in Section 3.1
on these 47,876 domains. 9,730 of these domains obtained
a score greater than 0.5 and are flagged malicious.

To avoid confusion, we call M0 the set of 9,768 mali-
cious domains and L0 the set of 19,976 legitimate domains
used for training (Section 3.1) and M1 the set of 9,730
flagged malicious domain obtained from the SVM classifier.

We want to see the similarity between M0 and M1. We
will also compare M0 and L0. We use two similarity metrics
for this: the Jaccard index and the histogram intersection.
The Jaccard index is defined as the number of items in the
intersection between two sets divided by number of items in
the union of the same two sets. The histogram intersection
calculates the similarity between two histograms. In our
case, it is used for the comparison between the word score
distribution graphs of M0 and M1, and M0 and L0. The
word score distribution graph is a histogram where the bar
in each bin represents the percentage of words in a range
of scores. Our results are shown in Table 5 and Figure 6.

Phishing sets M0 and M1 end up with very compara-
ble number of domains as well as number of words. The
phishing domains in these sets are very different, with a
Jaccard index of only 0.000011, but they do share a fair
amount of similar words (the Jaccard index is 0.32). When
comparing M0 with L0, we can see that legitimate domains
and phishing domains share fewer common words. If we
look at the average score of the words the sets do share, we
can see that shared words between the phishing sets score on
average much higher than between phishing and legitimate
sets (0.34 vs 0.22). Figure 6 (a) shows the details of the
Jaccard index comparison. We can see that the two word sets
have higher similarity for the words in the high score bin.
Specifically, the sets of words with scores greater than 0.8
have a Jaccard index greater than 0.7. This indicates that our
semantic-based word model can detect malicious domains
that use different words but have similar semantics. This
would not be possible with a keyword-based word model
using a predefined list of keywords. Figure 6 (b) compares
the word score distribution between M0, M1 and L0. We
can see that both phishing domain sets have a similar distri-
bution, with the majority of the words falling into the low
score bin, [0-0.2]. This is why they have a high histogram
intersection at 0.95. Despite this, our model can still detect
phishing domains, by learning the few keywords that are
specific to them. Looking at the word score distribution
between M0 and L0, it can be seen that legitimate domains
tend to use words with lower scores, while phishing domains

7. https://www.phishtank.com
8. https://www.ibm.com/security/xforce
9. https://openphish.com/

uses more “malicous” words with high scores, which yields
a lower histogram intersection.

4. Semantic-based Scanning System: Seman-
ticPhish (RQ3)

We now turn our attention to RQ3: If the answer to
RQ2 is true, then can such a system be used to effectively
detect some phishing attacks significantly earlier than they
are today, in particular before there is any evidence that the
attack itself is active?

4.1. System Design of SemanticPhish

To answer RQ3, we propose SemanticPhish, a system for
monitoring and detecting phishing attacks at an early stage.
The architecture of SemanticPhish is shown in Figure 7. In
addition to the domain words model and machine learning
classifier discussed in the previous sections, there are three
other components, responsible for crawling, detecting and
verifying.

• Crawling Scheduler. As discussed in Section 3, the
output of the classifier is a score between 0 and 1. In
order to efficiently scan a large number of domains,
we divide the score range into 10 intervals of length
0.1, corresponding to 10 buckets. We distribute the
domains into these buckets based on their score. The
priority of the bucket is based on the range of scores
it covers. The crawling scheduler assigns crawlers
to scan each bucket, starting from the bucket with
the highest priority. The crawlers simply scan all
the domains in the buckets, and move to the next
bucket down when finished. Each time a higher
priority bucket is updated (new domains are added),
the crawling scheduler sends the crawlers back to
that buckets, and the new domains are scanned. The
crawlers then resume scanning the lower priority
bucket.
For each domain scanned, the crawler attempts to
reach the domain’s root path using http and https
protocols, and stores the DOM as well as the page
screenshot when one is returned. If there are redi-
rects between the root path and the final URL, the
crawler logs the redirect path. Finally, the stored
page information is then passed to the Phishing
Detection Model.

• Phishing Detection Model. The goal of the phishing
detection model is to identify phishing attacks us-
ing any existing phishing attack detection approach.
In our experiments, we used [8] as the detection
model. Specifically, we first extract the so-called
“tag vector”. The tag vector simply counts the num-
ber of occurrences of each possible HTML tag in
the DOM. We then compare the similarity between
that vector and a set of similarly constructed vec-
tors obtained from known phishing attacks. If the
distance is less than a specific threshold, the page

Comparison entry M0 M1 L0

of domains 9,768 9,730 19,976
of words 5,274 5,717 10,559
Jaccard index of domain sets - 0.00011 0
Jaccard index of word sets - 0.32 0.14
Average score of common words - 0.34 0.22
Histogram intersection of word score distribution graph - 0.95 0.82

TABLE 5. COMPARING M0 WITH M1 , AND M0 WITH L0

(a) Jaccard index across word score between M0 and M1 (b) Word score distribution of M0, M1 and L0

Figure 6. Similarity comparison

Figure 7. Architecture of SemanticPhish

is flagged as phishing. It should be noted that many
different detection models can be used instead. The
one presented here is chosen because it is fast to
compute and easy to deploy.

• Page Analysis Model Since the phishing detection
model may miss zero-day attacks or yield false
positives, we include a manual verification step to
our model. In the page analysis model, we list the
detailed information of the page that have been
scanned, for manual analysis and validation. In order
to reduce the duplicates, we group up the pages
that have the same tag vector. The phishing page
that are validated are output as marked as confirmed
phishing attack. The phishing detection model is
updated if necessary. This manual verification step

is optional and can be adapted to the level of trust
one has in the phishing detection model. We have
used it systematically here to ensure that the number
reported in this paper are accurate.

In SemanticPhish, there are two models that need train-
ing before being used for detection: the machine learning
classifier and the phishing detection model. The classifier
is trained as explained in Section 2.4.1. The training data
for the phishing detection model is an incremental list of
phishing attacks that are updated daily from various phishing
blacklist feeds, including https://www.phishtank.com and
https://openphish.com/.

4.2. Evaluation of SemanticPhish

The goal of SemanticPhish is to detect phishing attacks
early. In order to evaluate the detection efficiency of Se-
manticPhish in practice, we apply SemanticPhish on a real-
time stream of domain logs. It is worth noting that the ideal
input for SemanticPhish is a list of the domains that have
recently become active, which allows SemanticPhish to start
monitoring and detecting as early as possible. However, we
do not have access to such a source. We adopt an alternative
and use the certificate transparency logs (CT logs) provided
by CertStream10. Certificate transparency is an open frame-
work that monitors and audits TLS/SSL certificates in real
time11, and is used by many domain providers. The idea of
certificate transparency is that each time a domain updates
its certificate, a log about the transaction will be submitted to
the certificate transparency network. That network is acces-
sible to domain owners, CAs and domain users. Therefore,
the domains that are in CT logs are domains for which a
certificate has been issued, which includes domains that have
had their certificate renewed, and well as new domains that
have an TLS/SSL certificate issued for the first time.

4.2.1. Efficiency of Filtering Malicious Domains.

One advantage of SemanticPhish is that it is able to
initially filter out potential malicious domains only using
domains names rather than collecting other information
which would be much slower. To assess the efficiency of
filtering malicious domain names, we used SemanticPhish
to track CT logs between January 29, 2019 and February 6,
2019. Since the size of stream CT logs, roughly 1.8 million
domains per day at the time, was too large for our server
to handle, we randomly sampled around 1% of the logs per
hour.

Our results are shown Table 6. In total, we have scanned
109,694 domains, and only a few domains fall in high score
bins, e.g., 0.23% in 0.9-1.0 range and 0.78% in 0.8-0.9
range. This is completely expected since the vast majority of
the domains in CT logs are regular, benign sites and should
not have a high score in our domain words model. 66,295
of the 109,694 domains were reachable by our crawlers
at that time. Again, that is not really surprising, since site
owners might acquire certificates for their domains before
launching their site. Of these, we have 11 verified malicious
domains detected, 4 of which fall in the score range 0.8-1.0,
which is 2.51% of the domains in that range. The phishing
domains with low scores either do not use English words
(e.g., scure.anhaengerkalberer.ch or teb-cepte.com), or use
misspelled words (e.g., welocmweincre.com or deveryser-
vices.gb.net).

This indicates that our SemanticPhish is able to effec-
tively filter out malicious domains from large-scale domain
logs. What is more, it only takes on average 8 milliseconds
on our machine to compute the score of a domain. A system

10. https://certstream.calidog.io
11. http://www.certificate-transparency.org/

such as SemanticPhish can thus easily be integrated into
existing detection systems.

4.2.2. Efficiency of Detecting Early Phishing Attacks.

Our previous experiment shows that SemanticPhish is
efficient at filtering malicious domains. In this section, we
assess the performance of SemanticPhish in detecting phish-
ing attacks early.

We again tracked the stream of CT logs between May
30, 2019 and June 5, 2019. We only kept the domains with
a score of 0.9 or higher, that is, highly suspicious domains.
We re-scanned these domains every 6 hours for 5 days in
order to detect any change in their status. When changes
were detected (e.g. new DOM and new landing URL), we
updated our database.

We choose Google Safe Browsing (GSB)12 as the base-
line for our comparison because it is widely used by major
browsers, such as Chrome, Firefox and Safari. Since the list
of phishing sites provided by GSB is updated dynamically,
we verified the list of our domains daily with GSB and
collected the domains that were flagged, as well as when
they were flagged.

Our results are shown Table 7. Overall, we have scanned
21,131 domains, and 14,546 (68.84%) of them are reach-
able. Of all the scanned domains, 766 domains are detected
as malicious by GSB and/or by SemanticPhish. Seman-
ticPhish detects 361 of these domains, 250 of which are
still not flagged by GSB five days after SemanticPhish’s
detection.

When looking at these 250 domains, we find that many
of them belong to series of related phishing domains, and
GSB only flags a few of the domains in the series. For
instance, we had 72 domains following the pattern webmail-
clientxx.dns05.com, where xx is a number between 0 and
100. Only 4 of these 72 domains were flagged by GSB.

We also found series of malicious domains that use
the same hostname but different TLD. Again, only a few
of them were flagged by GSB. These results indicate that
the attacker tends to deploy phishing attacks on multiple
domains using similar names. SemanticPhish is able to
flag such phishing attacks at an early stage: whenever the
phishing domain appears in the monitoring log, the attack
starts being monitored and can be flagged as soon as the
phishing website is activated.

For the 516 domains reported to be malicious by GSB,
182 domains were never reachable by our crawlers through-
out the experiment and we were thus unable to confirm
or refute GSB’s verdict. Another 223 domains were not
confirmed as malicious by SemanticPhish: these domains
either host blank pages or are parked with advertisement
pages. We cannot tell if these are incorrect verdicts from
GSB, or if these domains were indeed phishing attacks that
were already taken down by the time we reached them (e.g.
some malicious domains may have already been detected or
blocked before the certificate was issued for example). The

12. https://safebrowsing.google.com/

Score range # of scanned domains (%) # of reachable domains # of domains verified as phishing
(% of reachable domains)

0.9 - 1 257(0.23%) 135 3 (2.22%)
0.8 - 0.9 855(0.78%) 339 1 (0.29%)
0.7 - 0.8 2,150(1.96%) 749 0
0.6 - 0.7 3,822(3.48%) 1,389 2(0.14%)
0.5 - 0.6 5,828(5.31%) 2,673 1(0.04%)
0.4 - 0.5 8,297(7.56%) 4,050 2(0.05%)
0.3 - 0.4 12,525(11.42%) 7,034 0
0.2 - 0.3 18,675(17.02%) 11,106 2(0.01%)
0.1 - 0.2 26,276(23.95%) 17,094 0
0 - 0.1 31,009(28.27%) 21,726 0

TABLE 6. DOMAIN SCORE DISTRIBUTION OF SAMPLED CT LOGS

remaining 111 domains are identified as malicious domains
by both GSB and SemanticPhish. 31 of them are flagged
by GSB one day or more after being first detected by
SemanticPhish. Our results show that SemanticPhish can
indeed detect many phishing attacks days before they are
detected by GSB, at a very early stage. Adding a system
such as SemanticPhish to the series of detection tools being
used can greatly reduce the lifespan of phishing attacks.

5. Related Work

There exists a significant body of academic work fo-
cusing on phishing attacks detection. There are three main
approaches that have been suggested.

The first one is to detect phishing attacks by comparing it
with its target. Rosiello et al. [9] present a browser extension
using the similarity of a DOM tree to detect phishing attacks.
The idea of this work is to store a mapping between the
user’s sensitive information and the legitimate sites that use
the information. When the same sensitive information is
reused on a different site, the extension checks whether the
DOM of a new site is similar to the associated one.

Several studies apply visual similarity comparison to
detect phishing attacks. Chen et al. [10] applied the Gestalt
Theory to perform a comparison of visual similarity by using
normalized compression distance (NCD) as the similarity
metric. Sites logo [11] and favicon [12] comparison have
also been suggested. Some authors have suggested to use
search engines to acquire this knowledge automatically, for
example Cantina [13] which attempts to find the current
page on Google and warns if it is not found. Similarly, Huh
et al. [14] suggested to search the site’s URL in different
search engines and use the number of returned pages as an
indicator of phishing.

The second approach is to attempt to use machine
learning to discover the intrinsic characteristics of phishing
attacks. The goal of these approaches is to train a binary
classifier by learning the relations between data features and
the ground truth (phishing or legitimate). Cantina+ [15] pro-
poses a system using Bayesian Network mixing 15 features.
Gowtham et al. [16] proposed a detection system using a
Support Vector Machines (SVM) classifier and similar fea-
tures to Cantina+. Their system achieved 99.65% true posi-
tive and 0.42% false positive. Daisuke et al. [17] conducted

an evaluation of nine machine learning-based methods; in
their study, AdaBoost provided the best performance.

Finally, there are a number of new approaches and di-
rections that have been proposed to detect phishing attacks.
In [8], it is shown that most phishing attacks are duplicates
or variations of previously reported attacks. Thus, new attack
instances can be detected using these similarities. Corona
et al. [18] proposed a method to detect attacks hosted on
compromised servers, which compares the page of the attack
with the homepage that hosts it and the pages linked by it.

The most similar work is the studies [19]–[21]. Garera
et al. [19] find that phishing attacks tend to build URLs
using a limited set of words. They compile a list of sensitive
words that typically appear in phishing URLs, such as
login and signin. Kkhonji et al. [20] present a approach to
detect phishing attacks by using lexical feature of phishing
URLs. Marchal et al. [21] applies NLP technique to generate
phishing blacklist.

However, all of the above approaches have to know the
entry point of the phishing site before detecting it. Our
solution fills this gap, and is able to blindly scan phishing
attacks at an early stage.

6. Limitation and Future Work

Although our results show that SemanticPhish has good
performance at detecting phishing attacks at early stage,
there are several limitations that could be improved in future
work.

• As we have shown in Section 4.2.1, SemanticPhish
cannot effectively detect the domain names cre-
ated using non-English words. This problem can be
solved by using a word corpus in other languages.

• SemanticPhish currently only explores the root path
of each suspicious domains. This prevents our model
from detecting attacks that are hosted somewhere
else. In future work, we plan to attempt scanning
other paths, using known common locations for
other attacks.

• A better domain source can help further improve
system performance. Instead of using CT logs, we
could use real-time domain logs from DNS servers,
or even from registrars.

scanned domains 21,131
...# reachable domains 14,546
total malicious domains 766

Malicious domains detected by SemanticPhish
detected domains (manually confirmed) 361
...# detected malicious domains not reported by GSB 250

Malicious domains detected by GSB
detected malicious domains 516
...# unreachable domains 182
...# domains not confirmed by SemanticPhish 223
...# domains flagged by both SemanticPhish and GSB 111
...# domains detected at least 24h before GSB by SemanticPhish 31

TABLE 7. DETECTION RESULT COMPARISON BETWEEN SemanticPhish AND GSB

• In our experiments, we choose a 5-day observation
period, and find that some suspicious domains have
a longer incubation period, and become active after
this observation period. Therefore, a longer monitor-
ing period may help capture more attacks.

• One weakness of our proposed word vector-based
approach is that it cannot differentiate strings that
consist of same words but in different orders. For in-
stance, the strings “business-security-company” and
“security-business-company” end up with same vec-
tors. In future work, we plan to use n-grams instead
of single words to train the Word2Vec model.

7. Conclusion

In this paper, we have proposed a semantic-based scan-
ning system, SemanticPhish, to detect some phishing attacks
at an early stage. This system gives us an opportunity to
track and monitor phishing activities before an attacker
launches an attack. In order to effectively identify suspicious
hosts that likely host phishing attacks, we have proposed
a domain ranking model by analyzing the semantics of
the domain name. Since this ranking model uses only a
list of domain names as input, and does not require some
time-consuming processing, such as crawling pages and
collecting domain information, it allows our system to be
easily integrated into existing systems.

Our results show that when compared to legitimate
domains, some of the domains created for phishing attacks
typically use smaller but more semantically similar word
sets. This can be explained by the fact that the goal of
these phishing domains is to deceive victims by imitating the
domain name of a well-known website or using words that
express something of interest to the attacker. What is more,
we have observed that attackers often use multiple similar
domain names to launch the same attack. Our model can be
used to flag and monitor these domains, and ultimately block
them immediately when a attack ends up being deployed
there.

Finally, we compared our approach with Google Safe
Browsing (GSB). We have also demonstrated that Seman-
ticPhish can monitor and detect phishing attacks at an early
stage. Specifically, around 70% of attacks identified by

SemanticPhish are not reported by GSB within 5 days. Even
for the remaining phishing domains that are detected by
GSB and SemanticPhish, 28% are reported by GSB more
than one day after being detected by SemanticPhish. All of
the source codes and the data used in this paper can be
found at http://ssrg.site.uottawa.ca/blindphish.

Acknowledgments

This research was supported in part by the IBM Center
for Advanced Studies and by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] S. Le Page, G.-V. Jourdan, G. V. Bochmann, I.-V. Onut, and J. Flood,
“Domain classifier: Compromised machines versus malicious regis-
trations,” in International Conference on Web Engineering. Springer,
2019, pp. 265–279.

[2] Anti-Phishing Working Group, “Global Phishing Survey: Trends and
Domain Name Use in 2016,” http://docs.apwg.org/reports/APWG
Global Phishing Report 2015-2016.pdf, 2017.

[3] ——, “Global Phishing Report 2H 2014,” http://docs.apwg.org/
reports/APWG Global Phishing Report 2H 2014.pdf.

[4] E. Gabrilovich and A. Gontmakher, “The homograph attack,” Com-
munications of the ACM, vol. 45, no. 2, p. 128, 2002.

[5] S. T. Piantadosi, “Zipf’s word frequency law in natural language: A
critical review and future directions,” Psychonomic bulletin & review,
vol. 21, no. 5, pp. 1112–1130, 2014.

[6] D. Anderson, “Wordninja,” https://github.com/keredson/wordninja.

[7] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[8] Q. Cui, G.-V. Jourdan, G. V. Bochmann, R. Couturier, and I.-V. Onut,
“Tracking phishing attacks over time,” in Proceedings of the 26th
International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2017, pp. 667–676.

[9] A. P. E. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi, “A layout-
similarity-based approach for detecting phishing pages,” in Proceed-
ings of the 3rd International Conference on Security and Privacy in
Communication Networks, SecureComm, Nice, 2007, pp. 454–463.

[10] T.-C. Chen, S. Dick, and J. Miller, “Detecting visually similar web
pages: Application to phishing detection,” ACM Trans. Internet Tech-
nol., vol. 10, no. 2, pp. 5:1–5:38, Jun. 2010.

[11] E. H. Chang, K. L. Chiew, S. N. Sze, and W. K. Tiong, “Phishing
detection via identification of website identity,” in 2013 International
Conference on IT Convergence and Security, ICITCS 2013. IEEE,
2013, pp. 1–4.

[12] G.-G. Geng, X.-D. Lee, W. Wang, and S.-S. Tseng, “Favicon - a clue
to phishing sites detection,” in eCrime Researchers Summit (eCRS),
2013, Sept 2013, pp. 1–10.

[13] Y. Zhang, J. Hong, and C. Lorrie, “Cantina: a content-based approach
to detecting phishing web sites,” in Proceedings of the 16th Interna-
tional Conference on World Wide Web, Banff, AB, 2007, pp. 639–648.

[14] J. H. Huh and H. Kim, “Phishing detection with popular search
engines: Simple and effective,” in International Symposium on Foun-
dations and Practice of Security. Springer, 2011, pp. 194–207.

[15] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: A feature-
rich machine learning framework for detecting phishing web sites,”
ACM Trans. Inf. Syst. Secur., vol. 14, no. 2, pp. 21:1–21:28, Sep.
2011.

[16] R. Gowtham and I. Krishnamurthi, “A comprehensive and efficacious
architecture for detecting phishing webpages,” Computers & Security,
vol. 40, pp. 23–37, 2014.

[17] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, “An evalua-
tion of machine learning-based methods for detection of phishing
sites,” in International Conference on Neural Information Processing.
Springer, 2008, pp. 539–546.

[18] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda, M. Mereu,
G. Mureddu, D. Ariu, and F. Roli, “Deltaphish: Detecting phishing
webpages in compromised websites,” in European Symposium on
Research in Computer Security. Springer, 2017, pp. 370–388.

[19] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of
the 2007 ACM workshop on Recurring Malcode - WORM ’07. New
York, NY: ACM, 2007, pp. 1–8.

[20] M. Khonji, Y. Iraqi, and A. Jones, “Lexical url analysis for discrim-
inating phishing and legitimate websites,” in Proceedings of the 8th
Annual Collaboration, Electronic messaging, Anti-Abuse and Spam
Conference. ACM, 2011, pp. 109–115.

[21] S. Marchal, J. François, T. Engel et al., “Proactive discovery of
phishing related domain names,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2012, pp. 190–209.

