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Abstract—Threat assessment of systems is critical to organi-
zations’ security policy. Identifying systems likely to be at-risk
by threat actors can help organizations better defend against
likely cyber attacks. Currently, identifying such systems to a large
extent is guided by the Common Vulnerability Scoring System
(CVSS). Previous research has demonstrated poor correlation
between a high CVSS score and at-risk systems. In this paper,
we look at hacker discussions on darkweb marketplaces and
forums to identify the platforms, vendors, and products likely
to be at-risk by hackers. We propose a reasoning system that
combines DeLP (Defeasible Logic Programming) and machine
learning classifiers to identify systems based on hacker dis-
cussions observed on the darkweb. The resulting system is
therefore a hybrid between classical knowledge representation
and reasoning techniques and machine learning classifiers. We
evaluate the system on hacker discussions collected from nearly
300 darkweb forums and marketplaces provided by a threat
intelligence company. We improved precision by 15%–57% while
maintaining recall over baseline approaches.

I. INTRODUCTION

Adequate assessment of threats to systems is a central
aspect of a mature security policy—identifying systems that
are at-risk can help defend against potential cyber attacks.
Currently, organizations rely on the rating system (CVSS
score) provided by The National Institute of Science and
Technology that maintains a comprehensive list of publicly
disclosed vulnerabilities in the National Vulnerability Database
(NVD [21]) to identify if their systems are at risk. Case studies
have shown poor correlation between the CVSS score and the
likelihood that a vulnerability on a system will be targeted by
hackers [2]. Hence, organizations are constantly looking for
ways to proactively identify if their vulnerable systems are of
interest to hackers.

Threat intelligence from deepweb and darkweb (D2web)
has been leveraged to predict whether or not a vulnerability
mention on D2web will be exploited [4], [3]. This method
only considers hacker discussions that have a CVE number
mentioned in them—a limitation of the approach is therefore
that discussions with no vulnerability identifiers (CVE) that
are of interest to threat actors are not taken into account.
In this paper, we propose to leverage this threat intelligence
gathered from D2web markets and forums to identify the
systems that might be of interest to threat actors. We identify
systems based on the structured naming scheme Common

TABLE I: System components and examples

Components Explanation and Examples

Platform Can be either hardware (h), operating system
(o), or application (a) based on what the vul-
nerability exploits.

Vendor The owner of the vulnerable product. Exam-
ples include Google, Microsoft, The Mozilla
Foundation, and the University of Oxford.

Product The product that is vulnerable. Examples in-
clude Internet Explorer, Java Runtime Environ-
ment, Adobe Reader, and Windows 2000.

Platform Enumeration (CPE [7]). We focus our efforts towards
identifying the first three system components of the CPE
naming scheme; Table I shows these three components, with
examples for each.

We design a system that leverages threat intelligence (hacker
discussions) and makes a decision regarding at-risk systems,
at the same time providing arguments as to why a particular
decision was made. It explores multiple competing hypotheses
(in this case multiple platforms, vendors, products) based on
the discussions for and against a particular at-risk component.
The resulting system is a hybrid that combines DeLP with
machine learning classifiers. Previously, a similar reasoning
system was employed for attributing cyber-attacks to respon-
sible threat actors [23] evaluated on a capture-the-flag dataset.
Specific contributions of this paper include:

• We frame identifying at-risk systems as a multi-label clas-
sification problem, and apply several machine learning
approaches to compare their performance. We find that
large number of possible label choices for vendors and
products with less representation in training account for
the majority of the misclassified samples.

• To address misclassification, we propose a hybrid rea-
soning framework that combines machine learning tech-
niques with defeasible argumentation to reduce the set of
possible labels for each system component. The reasoning
framework can provide arguments supporting the deci-
sions, indicating why a particular system was identified
over others; this is an important aspect, supporting a
security analyst in better understanding the result.978-1-5386-4922-0/18/$31.00 2018 IEEE



• We report on experiments showing that the reduced set
of labels used in conjunction with the classifiers leads to
significant improvement in precision (15%-57%) while
maintaining comparable recall.

The rest of the paper is organized as follows. In Section II
we briefly discuss some terminologies used throughout the
work. A system overview is presented in Section III, and then
we discuss the dataset and provide an analysis in Section IV.
This is followed by the argumentation model based on [12] in
Section V; then, the experimental setup and results (along with
the DeLP programs for each system component) are discussed
in Section VI. This is followed by a discussion on the results
and related work in Section VII and Section VIII, respectively.
Finally, conclusions are discussed in Section IX.

II. BACKGROUND

A. Darkweb (D2web) websites

Darkweb refers to the portion of the internet that is not
indexed by search engines and hence cannot be accessed
by standard browsers. Specialized browsers like “The Onion
Router” (Tor)1 are required to access these websites. Widely
used for underground communication, Tor is free software
dedicated to protect the privacy of its users by obscuring traffic
analysis [10]. The network traffic in Tor is guided through a
number of volunteer-operated servers (also called “nodes”).
Each node of the network encrypts the information it blindly
passes on neither registering where the traffic came from nor
where it is headed [10], disallowing any tracking. We retrieve
information from both marketplaces, where users advertise to
sell information regarding vulnerabilities or exploits targeting
the vulnerabilities, and forums that provide discussions on
discovered vulnerabilities among others.

Markets: Users advertise and sell their products and services
(referred to as items) on marketplaces. D2web marketplaces
provide a new avenue to gather information about the cyber
threat landscape, in particular exploits targeting vulnerabilities
or hacking services provided by vendors at a particular price.
These marketplaces also sell goods and services relating to
drugs, pornography, weapons, and software services—these
need to be filtered out for our application.

Forums: These are user-oriented platforms where like-minded
individuals have discussions on topics of interest, regardless
of their geophysical location. Administrators set up D2web
forums with communication safety for their members in mind.
While structure and organization of D2web-hosted forums
might be very similar to more familiar web-forums, the topics
and concerns of the users vary distinctly. Forums addressing
malicious hackers feature discussions on programming, hack-
ing, and cyber-security with newly discovered vulnerabilities
as well as zero-days (vulnerabilities not publicly disclosed
yet). Threads are dedicated to security concerns like privacy
and online-safety—such topics plug back into and determine
the structures and usage of the platforms.

1See the Tor Project’s official website (https://www.torproject.org/)

B. Vulnerability related terms

Vulnerability is a flaw in a system (software/hardware) that
makes the system vulnerable to attacks compromising the
confidentiality, integrity or availability of the system to cause
harm [24].
CVE: Common vulnerability enumeration (CVE) is a unique
identifier assigned to a system vulnerability reported to
NIST [8]. NIST maintains a database of all the vulnerabili-
ties publicly available in the National Vulnerability Database
(NVD [21]). Predicting exploitability of a CVE is an important
problem and recent work leveraging darkweb data has shown
good performance in achieving that goal [4], [3]. But these
techniques reply on direct mentions of CVE’s. We Note that a
very small portion of hacker discussions in the data from the
commercial provider has direct CVE mentions.
CPE: Common platform enumeration (CPE) is a list of
software / hardware products that are vulnerable for a given
CVE. NIST makes this data available for each vulnerability in
its database. Identifying at-risk systems in terms of its compo-
nents (see Table I) is an important step towards predicting if
those systems will be targeted by threat actors (in cases where
the hacker discussion is not associated with a CVE number).
For the system components under consideration, there exists
a hierarchy starting from the platform to vendor to product.
For instance, if we are considering operating systems, then
there are limited number of vendors that provide it: Microsoft,
Apple, Google, etc. If we identify Microsoft as our vendor,
then the products are related to the Windows operating system.
This hierarchy helps us to narrow down possible choices as
we go down the hierarchy.

III. SYSTEM OVERVIEW

Fig. 1 gives an overview of the reasoning system; it consists
of the following three main modules:
• Knowledge Base: Our knowledge base consists of hacker

discussions from darkweb (D2web) forums and mar-
ketplaces. This data is maintained and made available
through APIs by a commercial darkweb threat intel-
ligence provider2. The database is collected from 302
websites3. We use the hacker discussions in terms of
posted content (from forums) and item descriptions (from
markets), the website it is posted on, and the user posting
the discussion as inputs to both the argumentation and
machine learning models. We also input the CPE hierar-
chy from NVD to the argumentation model. We discuss
and provide further analysis of the data in Section IV. For
the experiment, we sort the dataset by time (depending on
when the discussion was posted); the first 80% is reserved
for training (knowledge base) and the remaining 20% for
testing. We follow similar time split to compute the CPE
heirarchy as well.

• Argumentation Model: This component constructs ar-
guments for a given query (at-risk system component)

2Cyber Reconnaissance, Inc. (CRY3CON), https://www.cyr3con.com.
3At the time of writing this paper
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Fig. 1: Reasoning System

using elements in the knowledge base. We use a for-
malism called DeLP that combines logic programming
with defeasible argumentation. It is made up of three
constructs: facts: observations from the knowledge base
that cannot be contradicted; strict rules: logical com-
binations of facts that are always true; and defeasible
rules: can be thought of as strict rules but are only
true if no contradictory evidence is present. We discuss
the argumentation framework with examples for each
of the constructs in Section V. Arguments help reduce
the set of possible choices for platforms, vendors and
products; this reduced set of possible system components
acts as one of the inputs to the machine learning model.
The argumentation model thus constrains the machine
learning model to identify the system from the reduced
set of possible platforms, vendors, and products.

• Machine Learning Model: The machine learning model
takes the knowledge base and query as input, along with
the reduced set of possible system components from the
argumentation model, and provides a result identifying
the system. It is constrained by the argumentation model
to select the components from the reduced platform,
vendor and product set, which aids the machine learn-
ing model (improving precision) as demonstrated in the
results section of the paper. We use text-based features
extracted from the discussions (TF-IDF/Doc2Vec) for the
machine learning model. Any standard machine learning
model can be used in this module. We provide a compar-
ison of different machine learning models to select the
best one.

IV. DATASET

A. D2web data

We use D2web data supplied by a threat intelligence com-
pany. The data is accessed via APIs. The data is comprised
of forum discussions and marketplace items offered for sale
in D2web. Exploration of D2web discussions in terms of
their structure, content and behavior of users who post these
discussions is reported in [30]. The data is collected period-
ically to obtain time-based information indicating changes in
the forums and marketplaces. To ensure collection of cyber-
security relevant data, machine learning models are employed
that filter the data related to drugs, weapons, and other
irrelevant discussions. Table II shows the characteristics for
the websites, posts/items, and users. The data is comprised
from websites with different languages. A single website might
have discussions in different languages. Fig. 2 shows the
percentage of total websites from the D2web for the top ten
languages used to post discussions Majority of the websites
have discussions in English (73%), with other languages
having an even distribution. The commercial data collection
platform automatically identifies the language and translates it
to English using the Google Translate API [14].

Ground Truth. In order to evaluate the performance of the
reasoning framework, we need ground truth associated with
the hacker discussions. To obtain ground truth we consider
discussions from forums and marketplaces that mention a CVE
number. From the CVE number we can look up the vulnerable
systems using the NVD; we note that for both training and
testing we remove the CVE number while computing features.
Table II shows the characteristics for the websites, posts/items,
and users that mention a CVE number. The hacker discussion
with CVE mentions belong to 135 websites posted by 3361
users. On analyzing the CVE mentions most of the older
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Fig. 2: Percentage of total websites belonging to the top ten
languages in the D2web data.

TABLE II: Characteristics of D2web data

Number of D2web websites 302

Number of unique users 635,163

Number of unique posts / items 6,277,638

Number of D2web websites (CVE mentions) 135

Number of unique users (CVE mentions) 3,361

Number of unique posts / items (CVE mentions) 25,145

vulnerabilities target products that are no longer in use. For
that reason in our experiments we consider CVE discussions
posted after 2013 (starting 01/01/2014). These discussion
make up around 70% of the total CVE discussions.

CPE Hierarchy. We compute the hierarchy for all the vulnera-
ble systems from all the vulnerabilities disclosed in NVD [21],
and maintain it as a dictionary to build arguments on top of
it. Fig. 3 shows a subset of the built hierarchy with the three
system components (platform, vendor and product).

Website/User preference. We compute and maintain a list of
system components discussed for each website and user. This
lets us know if a particular website is preferred by hackers
to discuss specific at-risk systems. The user list gives us the
preference of the user regarding what at-risk systems are of
interest to him/her.

Overall in our dataset, for platforms most discussions pose
a threat to operating systems (57%), following by applica-
tions (43%) and hardware makes up a small fraction of the
discussions (3%). There are discussions that pose a risk to
multiple platforms i.e. operating systems and application or in
few instances all three. For vendors, the top five at-risk based
on CVE mentions in the hacker discussions: Microsoft (24%),
Linux (9%), Apple (6%), Oracle (5%), Adobe (5%). Similar to
platforms discussions can pose a risk to multiple vendors. For
products the distribution is more even since a single vendor
can have multiple products. Even though Microsoft dominates
the vendor discussion, it also has the most number of products
that are at risk. The top five at-risk products based on CVE
mentions in the hacker discussions: Windows server (5%),

Operating 
System (o)

Mac OSXWindows 
Server

Windows 10

AppleMicrosoft

Product

Vendor

Platform

Fig. 3: Subset of CPE Hierarchy

Windows 8.1 (4%), Linux kernel (3.8%), Mac OSX (2.3%),
Flash player (1.9%).

V. ARGUMENTATION MODEL

Our approach relies on a model of the world where we
can analyze competing hypotheses. Such a model allows for
contradictory information so it can handle inconsistency in the
data similar to the one employed for attributing cyber-attacks
to responsible threat actors [31], [23].

Before describing the argumentation model in detail, we
introduce some necessary notation. Variables and constant
symbols represent items such as the platform/vendor/product
at-risk by the discussion and post/webID/userID represent the
hacker discussion, where it was posted and who posted it re-
spectively (we note that for privacy concerns the webID/userID
is represented as an integer in the data provided by the APIs—
the names are not disclosed). We denote the set of all variable
symbols with V and the set of all constants with C. For our
model we require six subsets of C:

• Cpost denoting the hacker discussion,
• Cweb , denoting the websites (both forums and market-

places) where the hacker discussion was posted,
• Cuser , denoting the users who posts hacker discussions,

and
• Cplatform , Cvendor , Cproduct denoting the three compo-

nents at-risk by the discussion (see Table I).

We use symbols in all capital letters to denote variables. In
the running example, we use a subset of the D2web dataset
collected by the threat intelligence company.

Example 1. The following system and post/web/user informa-
tion will be used in the running example:

Cpost = {post1, post2, ..., postn}
Cweb = {webID1,webID2, ...,webIDn}
Cuser = {userID1, userID2, ..., userIDn}
Cplatform = {h, o, a}
Cvendor = {microsoft, google, the mozilla foundation}
Cproduct = {internet explorer, windows 10, adobe reader} �



TABLE III: Example predicates and explanation

Predicate Explanation

posted(post1, webID1) post1 was posted on the web-
site webID1.

at risk(D,V) Post D discussed vendor V be-
ing at-risk.

user preference
(userID1,microsoft)

userID1 prefers to post discussions
regarding Microsoft systems at-risk.

previously seen
(webID1, adobe flash)

At-risk discussions regarding Adobe
Flash are discussed in webID1.

parent(microsoft, safari) Vendor Microsoft is a parent of
product Safari.

The language also contains a set of predicate symbols that
have constants or variables as arguments, and denote events
that can be either true or false. We denote the set of predicates
with P; examples of predicates are shown in Table III. For
instance, user preference(userID1,microsoft) will either be
true or false, and denotes the event where userID1 prefers
to post discussions regarding microsoft systems at-risk.

A ground atom is composed by a predicate symbol and
a tuple of constants, one for each argument—hence, ground
atoms have no variables. The set of all ground atoms is denoted
with G. A ground literal L is either a ground atom or a negated
ground atom. An example of a ground atom for our running
example is posted(post1, webID1). In the following, we will
use G′ to denote a subset of G.

In order to be able to deal with conflicting information and
offer explainable results, we choose a structured argumentation
framework [26] for our model; our approach works by creating
arguments (in the form of a set of rules and facts) that compete
with each other to identify at-risk system given a hacker
discussion on D2web. In this case, arguments are defeated
based on the evaluation of contradicting information in other
arguments. This procedure is commonly known as a dialec-
tical process since it follows the same structure as dialogues
between humans—as such, arguments that are undefeated (or
warranted, in DeLP) prevail. Structuring the analysis in this
manner also allows us to leverage the resulting structure, since
the set of all prevailing arguments give a clear map of how
the conclusion is supported by the available data.

The clear benefit of the transparency afforded by such a
process is that it lets a (human) security analyst not only
add new arguments based on new evidence, but also eliminate
information identified as incorrect (perhaps because it is out
of date, or because it comes from a source newly identified as
untrustworthy) and fine-tune the model for better performance.
Since the argumentation model can deal with inconsistent
information, it draws a natural analogy to the way humans
settle disputes when there is disagreement. Having a clear
explanation of why one argument is chosen over others is a
desirable characteristic for both the analyst and for organiza-
tions to make decisions and policy changes. We now briefly

discuss some preliminaries on DeLP.

Defeasible Logic Programming: DeLP is a formalism that
combines logic programming with defeasible argumentation;
we refer the interested reader to [12] for a fully detailed
presentation of the system.

In summary, the formalism is made up of several constructs,
namely facts, strict rules, and defeasible rules. Facts represent
statements obtained from evidence, and are therefore always
considered to be true; similarly, strict rules are logical combi-
nations of elements (facts or other inferences) that can always
be performed. On the contrary, defeasible rules can be thought
of as strict rules that may be true in some situations, but could
be false if certain contradictory evidence is presented. These
three constructs are used to build arguments, and DeLP pro-
grams are simply sets of facts, strict rules and defeasible rules.
We adopt the usual notation for DeLP programs, denoting the
program (or knowledge base) with Π = (Θ,Ω,∆), where Θ
is the set of facts, Ω is the set of strict rules, and ∆ is the
set of defeasible rules. Examples of the three constructs are
provided with respect to the dataset in Fig. 4. We now describe
the notation used to denote these constructs.

Facts (Θ) are ground literals that represent atomic information
or its (strong) negation (¬).

Strict Rules (Ω) represent cause and effect information; they
are of the form L0 ← L1, ...Ln, where L0 is a literal and
{Li}i>0 is a set of literals.

Defeasible Rules (∆) are weaker versions of strict rules, and
are of the form L0 -≺ L1, ...., Ln, where L0, is the literal and
{Li}i>0 is a set of literals.

When a hacker discussion happens on D2web, the model
can be used to derive arguments to determine the at-risk system
(in terms of platform, vendor, and product). Derivation follows
the same mechanism as classical logic programming [16];
the main difference is that DeLP incorporates defeasible
argumentation, which decides which arguments are warranted,
which arguments are defeated, and which arguments should
be considered to be blocked—the latter are arguments that are
involved in a conflict for which a winner cannot be determined.

Fig. 4 shows a ground argumentation framework demon-
strating constructs derived from our D2web data. For instance,
θ1 indicates the fact that a hacker discussion post1 was posted
on the D2web website webID1, and θ5 indicates that user
userID1 prefers to post discussions regarding apple products.
For the strict rules, ω1 says that for a given post post1 posing
a threat to operating system (o), the vendor sandisk cannot
be at risk if the parent of sandisk is not operating system
(o)4. Defeasible rules can be read similarly; δ2 indicates that
if post1 poses a threat to the vendor apple, the product safari
can be at-risk if apple is the parent of safari. By replacing
the constants with variables in the predicates we can derive a
non-ground argumentation framework that can be applied in
general.

4This encodes the CPE hierarchical structure.



Θ : θ1 = posted(post1,webID1)
θ2 = posted(post1, userID1)
θ3 = parent(o,micorsoft)
θ4 = parent(apple, safari)
θ5 = user preference(userID1, apple)
θ6 = previously seen(webID1, o)

Ω : ω1 = ¬ at risk(post1, sandisk)←
at risk(post1, o),
¬parent(o, sandisk)

ω2 = ¬ at risk(post1, internet explorer)←
at risk(post1, apple),
¬parent(apple, internet explorer)

∆ : δ1 = at risk(post1,microsoft) -≺
at risk(post1, o),
parent(o,microsoft)

δ2 = at risk(post1, safari) -≺
at risk(post1, apple),
parent(apple, safari)

δ3 = at risk(post1, apple) -≺
user preference(userID1, apple)

δ4 = at risk(post1, o) -≺
previously seen(webID1, o)

Fig. 4: A ground argumentation framework.

〈A1, at risk(post1,microsoft) 〉 A1 = {δ1, δ4, θ3}
〈A2,at risk(post1, safari) 〉 A2 = {δ2, δ3, θ4}
〈A3, at risk(post1, apple)〉 A3 = {δ3, θ5}
〈A4, at risk(post1, o)〉 A4 = {δ4, θ6}

Fig. 5: Example ground arguments from Figure 4.

Definition 1. (Argument) An argument for a literal L is a
pair 〈A, L〉, where A ⊆ Π provides a minimal proof for L
meeting the requirements: (1) L is defeasibly derived from A5,
(2) Θ ∪ Ω ∪ ∆ is not contradictory, and (3) A is a minimal
subset of ∆ satisfying 1 and 2, denoted 〈A, L〉.

Literal L is called the conclusion supported by the ar-
gument, and A is the support. An argument 〈B, L〉 is a
subargument of 〈A, L′〉 iff B ⊆ A. The following examples
discuss arguments for our scenario.

Example 2. Fig. 5 shows example arguments based on the
KB from Fig. 4; here,

〈
A3, at risk(post1, apple)

〉
is a subar-

gument of
〈
A2, at risk(post1, safari)

〉
. �

For a given argument there may be counter-arguments that
contradict it. A proper defeater of an argument 〈A,L〉 is a
counter-argument that—by some criterion—is considered to
be better than 〈A, L〉; if the two are incomparable according
to this criterion, the counterargument is said to be a blocking
defeater. The default criterion used in DeLP for argument
comparison is generalized specificity [32], but any domain-
specific criterion (or set of criteria) can be devised and
deployed.

5This means that there exists a derivation consisting of a sequence of rules
that ends in L—that possibly includes defeasible rules.

A sequence of arguments is called an argumentation line.
There can be more than one defeater argument, which leads to
a tree structure that is built from the set of all argumentation
lines rooted in the initial argument. In this dialectical tree,
every child can defeat its parent (except for the root), and the
leaves represent unchallenged arguments; this creates a map
of all possible argumentation lines that can be used to decide
whether or not an argument is defeated. Arguments that either
have no attackers or all attackers have been defeated are said
to be warranted.

Given a literal L and an argument
〈
A, L

〉
, in order to

decide whether or not a literal L is warranted, every node
in the dialectical tree T (〈A, L〉) is recursively marked as “D”
(defeated) or “U” (undefeated), obtaining a marked dialectical
tree T ∗(〈A, L〉) where:

• All leaves in T ∗(〈A, L〉) are marked as “U”s, and
• Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then, 〈B, q〉

will be marked as “U” iff every child of 〈B, q〉 is marked
as “D”. Node 〈B, q〉 will be marked as “D” iff it has at
least one child marked as “U”.

Given argument 〈A, L〉 over Π, if the root of T ∗(〈A, L〉)
is marked “U”, then T ∗(〈A, h〉) warrants L and that L is
warranted from Π. It is interesting to note that warranted
arguments correspond to those in the grounded extension of a
Dung abstract argumentation system [11].

An implemented DeLP system therefore takes as inputs a
set of facts, strict rules, and defeasible rules, as well as a
query literal. Note that while the set of facts and strict rules
must be consistent (non-contradictory), the set of defeasible
rules can be inconsistent—the presence of such inconsistency
is the root of “interesting” cases. We engineer our at-risk
system framework as a set of defeasible and strict rules whose
structure was created manually, but are dependent on values
learned from a historical corpus of D2web data. Then, for a
given post discussing a vulnerability, we instantiate a set of
facts for that situation; this information is then provided as
input into the DeLP system, which uses heuristics to generate
all arguments for and against every possible components of the
system (platforms, vendors, products) for the post discussion.
Dialectical trees based on these arguments are analyzed, and a
decision is made regarding which components are warranted.
This results in a reduced set of potential choices, which we
then use as input into a classifier to obtain the at-risk system.
The following section discusses these steps in full detail.

VI. EXPERIMENTS

We frame the identification of at-risk systems as a multi-
label classification problem for each of the system component
(platform, vendor, and product)—the basic step involves ex-
tracting textual features from the discussions to be used as
input to the machine learning models. We now describe the
data pre-processing steps and the standard machine learning
approaches, along with the metrics used for evaluating the
models.



A. Data Representation

As mentioned above, we use text-based features to represent
the hacker discussions on the D2web, which are then used as
input to the machine learning models. Some of the discussions
are in foreign languages (cf. Fig. 2). The commercial data
collection platform automatically identifies the language and
translates it to English using the Google Translate API [14].
The following pre-processing steps are taken to address differ-
ent challenges. We employ two feature engineering techniques
namely TF-IDF and Doc2Vec.

Text Cleaning. We remove all non-alphanumeric characters
from hacker discussions. This removes any special characters
that do not contribute towards making the decision.

Misspellings and Word Variations. Misspellings and word
variations are frequently observed in the discussions on the
D2web, leading to separate features in the feature vector if
a standard bag-of-words (BOW) approach is used. In BOW,
we create a dictionary of all the word occurrences in the
training set; then, for a particular discussion, the feature vector
is created by looking up which words have occurred and their
count in the discussion. Misspellings and word variations will
thus be represented as different words; to address this, we use
character n-gram features. As an example, consider the word
“execute”—if we were using tri-gram character features, the
word “execute” would yield the set of features:

{“exe”,“xec”,“ecu”,“cut”,“ute”}.

The benefit of this technique is that the variations or mis-
spellings of the word, such as “execution”, “executable”, or
“”exxecute”, will all have common features. We found that
using character n-grams in the range 3–7 worked best in our
experiments.

TF-IDF Features. We vectorize the n-gram features using the
term frequency-inverse document frequency (TF-IDF) model,
which creates a vocabulary of all the n-grams in the discus-
sion. In TF-IDF, the importance of an n-gram feature increases
with the number of times it occurs, but is normalized by the
total number of n-grams in the description. This eliminates
common words from being important features. We consider
the top 1,000 most frequent features (using more than 1,000
features did not improve the performance, but rather only
added to the training and testing time).

Doc2Vec Features. Doc2Vec is a feature engineering tech-
nique to generate document vector (in our case document
refers to a discussion), which acts as input to the classifier
to identify at-risk systems. In Doc2Vec, first, a vector repre-
sentation of each word in the document in computed by taking
into account the words around it (to maintain context) and then
these word vectors are averaged to get a representation of the
document. We implement Doc2Vec using the gensim library
in Python6. It was been previously used to classify tweets [33]
as well as product descriptions [15].

6https://radimrehurek.com/gensim/models/doc2vec.html

B. Supervised Learning Approaches

We conducted our experiments using the following standard
machine learning approaches implemented using a Python
machine learning library7.

Support Vector Machine (SVM). Support vector machines
(SVM) work by finding a separating margin that maximizes
the geometric distance between classes (in our case, different
platforms, vendors, and products). Given the geometric inter-
pretation of the data, the separating margin is referred to as a
hyperplane.

Random Forest (RF). Ensemble methods are popular classifi-
cation tools. They are based on the idea of generating multiple
predictors used in combination to classify new unseen samples.
We use a random forest that combines bagging for each tree
with random feature selection at each node to split the data,
thus generating multiple decision tree classifiers. Each decision
tree gives its own opinion on test sample classification, which
are then merged to make a final decision.

Naive Bayes Classifier (NB). NB is a probabilistic classifier
that uses Bayes’ theorem under the assumption of indepen-
dent features. During training, we compute the conditional
probabilities of a sample of a given class having a certain
feature. We also compute the prior probabilities for each class,
i.e., the fraction of the training data belonging to each class.
Since Naive Bayes assumes that the features are statistically
independent, the likelihood for a sample S represented with a
set of features a associated with a class c is given by:

Pr(c|S) = Pr(c)×
d∏

i=1

Pr(ai|c).

Decision Tree (DT). This is a hierarchical recursive partition-
ing algorithm. We build the decision tree by finding the best
split feature, i.e., the feature that maximizes the information
gain at each split of a node.

Logistic Regression (LOG-REG). Logistic regression clas-
sifies samples by computing the odds ratio, which gives the
strength of association between the features and the class.

C. Evaluation Metrics

In our experiments, we evaluate performance based on three
metrics: precision, recall, and F1 measure. For a given hacker
discussion, precision is the fraction of labels (platforms, ven-
dors, or products) that the model associated with the discussion
that were actual labels in the ground truth. Recall, on the other
hand, is the fraction of ground truth labels identified by the
model. The F1 measure is the harmonic mean of precision and
recall. In our results, we report the average precision, recall,
and F1 for all the test discussions.

7http://scikit-learn.org/stable/



TABLE IV: Average Precision, Recall, and F1 measure for
NB, LOG-REG, DT, RF and SVM to identify at-risk systems.

Component Model Precision Recall F1 measure

Platform

NB 0.68 0.65 0.66

LOG-REG 0.72 0.76 0.74

DT 0.66 0.70 0.68

RF 0.70 0.75 0.72

SVM 0.72 0.78 0.76

Vendor

NB 0.37 0.34 0.36

LOG-REG 0.28 0.25 0.27

DT 0.39 0.43 0.41

RF 0.40 0.43 0.41

SVM 0.40 0.48 0.44

Product

NB 0.19 0.14 0.16

LOG-REG 0.20 0.13 0.16

DT 0.22 0.15 0.18

RF 0.22 0.25 0.24

SVM 0.26 0.24 0.25

D. Baseline Model (BM)

For the baseline model, we only leverage the machine learn-
ing technique to identify the at-risk systems. We create training
and testing sets by sorting the discussions by posted time on
the website (to avoid temporal intermixing). We reserve the
first 80% of the samples for training and the rest (20%) for
testing. We employed both TF-IDF and Doc2Vec as feature
engineering techniques. On conducting the experiments, it was
observed that TF-IDF performed better than Doc2Vec in all the
experiments. Hence we only report the results using TF-IDF
features.

Results. Table IV shows the average performance of the
machine learning technique for each component of the at-risk
system. For platform identification, SVM performs the best
with the following averages:

• precision: 0.72,
• recall: 0.78, and
• F1 measure: 0.76.

LOG-REG had similar precision, but lower recall. Similarly,
for vendor identification, SVM performs the best with aver-
ages:

• precision: 0.40,
• recall: 0.48, and
• F1 measure: 0.44,

with RF having similar precision. For platform identification,
SVM had the best performance:

• precision: 0.28,
• recall: 0.24 (comparable to RF), and
• F1 measure: 0.25.

Θ : θ1 = posted(D,W)
θ2 = posted(D,U)

Fig. 6: Facts defined for each test discussion.

For s ∈ Sw:
∆ : δ1 = at risk(D, s) -≺ previously seen(W, s).

For s ∈ Su:
δ2 = at risk(D, s) -≺ user preference(U , s).

Fig. 7: Defeasible rules for platform identification.

Since SVM performs consistently better for all three classifi-
cation problems, moving forward we use SVM as our machine
learning component in the reasoning framework (cf. Fig. 1).

E. Reasoning Framework (RFrame)

As we go down the CPE hierarchy, the number of possible
labels for vendors and products increases largely as the number
of discussions representing each label decreases, thus making
learning difficult and decreasing performance. We address this
issue by proposing a set of strict and defeasible rules for
platform, vendor, and product identification. We note that these
rules arise from the discussion that is being evaluated and do
not require parameter learning.

We use the notation described in Table V for defining our
constructs (facts, strict rules, and defeasible rules). We note
that facts cannot have variables, only constants (however, to
compress the program for presentation purposes, we use meta-
variables in facts). To begin, we define the facts (see Fig. 6):
θ1 states that a hacker discussion D was posted on the D2web
websiteW (can be either forum or marketplace), and θ2 states
that the user U posted the discussion. For each level in the CPE
hierarchy, we define additional rules discussed as follows.

Platform Model. The first level of system identification is
identifying the platform that the hacker discussion is a threat
to. We compute previously discussed platforms on D2web
websites under consideration. Similarly, which platform the
user under consideration prefers (based on their previous
postings) is also computed. This shows preferred platform
discussions on websites and by users, which can aid the
machine learning model in reducing the number of platforms it
can identify from. The DeLP components that model platform
identification are shown in Fig. 7. For the defeasible rules,
δ1 indicates that all the platforms Sw previously seen in the
D2web websiteW where the current discussion D is observed
are likely at-risk, δ2 indicates that all the platforms Su from
user U’s previous postings are also likely at-risk.

Vendor Model. The second level is identifying the at-risk ven-
dor. For this case, we use the platform result from the previous
model, taking that as a DeLP fact. The DeLP components that
model vendor identification are shown in Fig. 8. Here, the
fact θ1 indicates the platform identified for the discussion—
note that multiple platforms may be identified based on the



TABLE V: Notation and Explanations

Notation Explanation

D The hacker discussion (posted on the website) under consideration.

W Website (marketplace or forum) where the hacker discussion was posted.

Sw, Vw and Pw The set of platforms, vendors and products at-risk by the hacker discussions previously seen inW under consideration
respectively.

U User posting the hacker discussion.

Su, Vu and Pu The set of platforms, vendors and products at-risk by the hacker discussions previously posted by user U under
consideration respectively.

Sp, Vp and Pp The set of platforms, vendors and products identified by the machine learning model at each level in the hierarchy
for hacker discussions under consideration respectively.

si, vi and pi Each element of the set Sp, Vp and Pp representing a single platform, vendor or product respectively.

For s ∈ Sp:
Θ : θ1 = at risk(D, s)

For s ∈ Sp:
Ω : ω1 = ¬ at risk(D, vi)← at risk(D, s),

¬parent(s, vi)

For v ∈ Vw:
∆ : δ1 = at risk(D, v) -≺ previously seen(W, v).

For v ∈ Vu:
δ2 = at risk(D, v) -≺ user preference(U , v).

For s ∈ Sp:
δ3 = at risk(D, vi)← at risk(D, s),

parent(s, vi)

Fig. 8: Defeasible rules for vendor identification.

discussion. The strict rule ω1 states that for a given post
D posing a threat to platform s, the vendor vi cannot be
at-risk if the parent of vi is not the identified platform s.
This rule is based on the CPE hierarchy obtained from NVD.
For the defeasible rules, δ1 indicates that all the vendors Vw

previously seen in the D2web website W where the current
hacker discussion D is observed are likely at-risk, δ2 indicates
that all the vendors Vu from user U’s previous postings are
also likely at-risk, and δ3 states that for a given post D posing
a threat to platform s, all the vendors whose parent is the
identified platform are likely at-risk. This rule is also based
on the CPE hierarchy from NVD.

Product Model. The third level is identifying the at-risk
product. For this case, we use the vendor result from the
previous model; as before, we use that as a DeLP fact. The
DeLP components that model product identification are shown
in Fig. 9. Here, the fact θ1 indicates the vendor identified
for the discussion—again, multiple vendors may be identified
based on the discussion. The strict rule ω1 states that for a
given post D posing a threat to vendor v, the product pi cannot
be at-risk if the parent of pi is not the identified vendor v
(again, based on the CPE hierarchy). For the defeasible rules,
δ1 indicates that all the products Pw previously seen in the
D2web website W where the current hacker discussion D is

For v ∈ Vp:
Θ : θ1 = at risk(D, v)

For v ∈ Vp:
Ω : ω1 = ¬ at risk(D, pi)← at risk(D, v),

¬parent(v, pi)

For p ∈ Pw:
∆ : δ1 = at risk(D, p) -≺ previously seen(W, p).

For p ∈ Pu:
δ2 = at risk(D, p) -≺ user preference(U , p).

For v ∈ Vp:
δ3 = at risk(D, pi)← at risk(D, v),

parent(v, pi)

Fig. 9: Defeasible rules for product identification.

observed are likely at-risk, δ2 indicates that all the products
Pu from user U’s previous postings are also likely at-risk, and
δ3 states that for a given post D posing a threat to vendor v,
all the products whose parent (in the CPE hierarchy) is the
identified vendor are likely at-risk.

Results. We evaluate the reasoning framework using an ex-
perimental setup similar to the one discussed in the baseline
model. We report the precision, recall, and F1 measure for
each of the system components and compare them with the
best performing baseline model (BM). Table VI shows the
comparison between the two models.

For platform identification, RFrame outperforms BM in
terms of precision: 0.83 vs. 0.72 (a 15.27% improvement),
while maintaining the same recall. Similarly, for vendor and
product identification there was significant improvement in
precision: 0.56 vs. 0.40 (a 40% improvement) and 0.41 vs.
0.26 (a 57.69% improvement), respectively, with comparable
recall with respect to the baseline model. The major reason for
the jump in precision is the reduction of possible labels based
on the arguments introduced that aids the machine learning
model to make the correct decision.



TABLE VI: Average Precision, Recall, and F1 measure com-
parison between the baseline model (BM) and reasoning
framework (RFrame).

Component Model Precision Recall F1 measure

Platform
BM 0.72 0.78 0.76

RFrame 0.83 0.78 0.80

Vendor
BM 0.40 0.48 0.44

RFrame 0.56 0.44 0.50

Product
BM 0.26 0.24 0.25

RFrame 0.41 0.21 0.30

VII. DISCUSSION

The performance of the reasoning system highlights that our
hybrid framework identifies at-risk systems with higher preci-
sion with respect to the approach using only machine learning
classifiers. In our application, we desire a high precision—
while maintaining at least comparable recall—in order to
provide high value risk assessment of systems; low precision
is often equated to a less reliable framework. The majority of
misclassifications are a result of less data representing those
systems in the training set; for some system components, the
instances can be as low as having only one discussion in the
training set. This issue becomes more relevant as we go down
the hierarchy with large numbers of vendors and products.
In some test instances, for the same platform and vendor,
a new product not previously known to be at-risk becomes
vulnerable due to a newly disclosed vulnerability. In this case,
the reasoning framework is not able to identify the product
since it was not previously observed, and this can contribute
to a misclassification.

From a security analyst’s perspective, the reasoning frame-
work not only provides a list of possible at-risk systems but
also provides arguments indicating why a particular system
was identified as being at-risk. This lets the analyst evaluate
the decisions made by the framework and fine-tune it if
necessary. For cases where a new product (not previously
discussed in training) is at-risk, even a partial identification
of the system (in terms of platform and vendor) is of value to
the analyst. Based on the alert provided by the framework,
the analyst can manually evaluate the arguments and the
discussions to identify possible products, depending on the
platform and vendor identified by the framework.

VIII. RELATED WORK

Threat assessment of systems is critical to organizations’
security policy. Over the years, CVSS [9] has become a
standard metric that organizations use to determine if their
systems are at risk of being targeted by hackers. Unfortunately,
case studies have shown poor correlation between the CVSS
score and which system are at-risk [2].

Identifying targeted systems through open source intel-
ligence. Open source intelligence has been used previously

to identify and predict vulnerabilities that are likely to be
exploited to determine which systems are at risk. [35] has
looked to predict the likelihood that a software has a vul-
nerability not yet discovered using the national vulnerability
database (NVD). They show that NVD has a poor prediction
capability in doing so due to limited amount of information
available. On the other hand, [28] looks to predict if a real
world exploit is available based on vulnerabilities disclosed
from Twitter data. The authors report high accuracies of 90%
using a resampled, balanced, and temporal mixed dataset,
not reflective of real world scenarios [6]. Identifying threats
to critical infrastructure by analyzing interactions on hacker
forums was studied in [17]. Here the authors reply on keyword
based queries to identify such threats from hacker interactions.
Tools to automatically identify products offered in cyber
criminal markets was proposed in [25]. This technique looks to
extract products mentioned in the description of the item that
is being offered, a problem different than what we address –
identifying targeted systems not explicitly stated in the forum
discussions.

More recently, researchers have shown increased interest
on gathering threat intelligence from D2web to pro-actively
identify digital threats and study hacker communities to gather
insights. Researchers have focused on building infrastructure
to gather threat information from markets (regarding goods
and services sold) and forums (discussions regarding exploits
and) [22], [27], studying the different product categories
offered in darkweb markets – creating a labeled dataset [18],
analyzing hacker forums and carding shops to identify poten-
tial threats [5], identify expert hackers to determine their spe-
cialties [1], identify key hackers based on posted content, their
network and since when they are active in the forum [19]. For
vulnerability research, studies look to leverage vulnerability
mentions in the D2web to predict the likelihood of exploitation
using a combination of machine learning and social network
techniques [4], [3]. These techniques rely on the mentions of
CVE numbers to identify likely targeted systems (which is a
small fraction of vulnerabilities [4]), not taking into account
discussions where a CVE number is not mentioned. On the
other hand, we look to identify the at-risk systems without
having a CVE number, which is a different problem from those
tackled in previous work.

Identifying targeted systems through software analysis. An-
other way of identifying targeted softwares with vulnerabilities
deals with analyzing the software itself in order to determine
which component of the software is most likely to contain
a vulnerability. Mapping past vulnerabilities to vulnerable
software components was proposed in [20], where the authors
found that components with function calls and import state-
ments are more likely to have a vulnerability. A similar method
was employed by [29], [34], where text mining was used
to forecast whether a particular software component contains
vulnerabilities. Similar text mining techniques for vulnerability
discovery are listed in [13]. The text mining methods create
a count dictionary of terms used in the software, which are



used as features to identify vulnerabilities. These methods
suffer from the issue of not knowing which vulnerabilities
might be of interest to hackers. On the other hand, we work
with hacker discussions posing a threat to systems that are of
clearly of interest to hackers since they are discussing them
on the D2web websites—vulnerabilities mentioned on D2web
regarding systems are more likely to be exploited [4].

IX. CONCLUSION

In this paper, we demonstrated how a reasoning framework
based on the DeLP structured argumentation system can be
leveraged to improve the performance of identifying at-risk
systems based on hacker discussions on the D2web. DeLP pro-
grams built on discussions found on forums and marketplaces
afford a reduction on the set of possible platforms, vendors,
and products that are likely to be at-risk by the hackers par-
ticipating in the discussion. This reduction of potential labels
leads to better precision while almost maintaining comparable
recall as compared to the baseline model that only leverages
machine learning techniques. Knowing discussed systems by
threat actors as possible targets helps organizations achieve
better threat assessment for their systems.
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