
1

Large Scale Detection of IDN Domain Name
Masquerading

Yahia Elsayed and Ahmed Shosha
Nile University
Cairo, Egypt

y.kandil@nu.edu.eg, ashosha@nu.edu.eg

Abstract—Introducing Unicode characters to domain names
enabled end users to register a domain name in different lan-
guages, i.e., Russian, Arabic or Chinese. This process is defined as
Internationalized Domain Names (IDN). The Unicode standard
contains a large number of characters and character sets. Some
of those Unicode characters’ sets may resemble some ASCII
characters (this is commonly referred as ”homoglyph”) which are
the basic building blocks for a domain name address. As such, an
attacker could use the concept of homoglyph to spoof a domain
name and lure an innocent user to visit a decoy domain instead of
a legitimate one. IDN domain spoofing could be best detected at
the end user side or by using a centralized monitoring solution.
This research work is focusing on the different IDN spoofing
attack types, and it proposes a new centralized monitoring system
that can detect those attacks.

Index Terms—Homoglyph, homograph, domain names, DNS,
security, IDNA, spoofing, phishing

I. Introduction
In the early 90s when the internet was connecting the

world, having internationalized applications and content on the
internet with many languages’ support was a major demand
[1]. That’s why several encoding techniques were introduced.
The Unicode standard was one of the encoding techniques that
came with a very significant advance over all other encoding
methods. For the first time, all characters can be represented
in a uniform manner, making it feasible for the vast majority
of programs to be globalized. The Unicode is built to handle
all human languages [2].
Unicode contains several character sets and incorporates

the varied writing systems. However, the larger repertoire of
characters in different sets (languages) resulted in a possible
scope for visual spoofing. The similarity in visual appearance
may lure a user to perform unsafe actions, such as accessing
a malicious domain [3], [4]. Although the visual character
spoofing exists in the standard ASCII1 (for example, 0 ”zero”
may be similar to ”O” in uppercase). Introducing the Unicode
increased the opportunities for visual spoofing; which in turn
facilitated social engineering and phishing attacks [5], [6].
Some character sets that are supported by Unicode contains

letters that are very similar to the English alphabet, and it may
confuse the end user. Those characters are called Homoglyph
[7]. A Homoglyph is a figure which visually looks like another

1http://www.asciitable.com

different figure in a different language - character set. Each
homoglyph has a different Unicode code point. For example,
the Cyrillic small letter a (”а”) has a code point of U+0430,
and it is visually identical to the Latin small letter a (”a”) with
a code point of U+0061 which exits in the English alphabet
[8].
With the support of Unicode, and the people’s desire to

register their domain names in their languages and writing
systems; The Internationalized Domain Name (IDN) was
introduced as a mechanism for creating Domain Names in
different languages, like Chinese, Arabic, and Russian [1],
[9], [10]. Since IDN is based on the Unicode encoding, the
Internationalization in Domain Names inherited most of the
security risks existing in the Unicode including the visual
spoofing issues [4], [7], [8].
DNS was deployed in the early days of the Internet, and

it is a cornerstone of the Internet infrastructure. Changing the
way of how DNS works by adding new character sets and
language scripts was not the optimal way to support IDN.
The most effective and efficient technique was by introducing
the Internationalized Domain Names in Application (IDNA)
without requiring any changes from the Internet infrastructure
[9], [10]. As such, Domain Names can be stored in the DNS
in the old legacy ASCII format (commonly called Punycode),
while it will be represented in the application with the mapped
IDN Unicode form. This process is performed using the
conversion algorithms ”ToAscii” and ”ToUnicode” [11].
Fortunately, the design of IDNA2003 and the enhanced

version IDNA2008 prevented a significant number of visual
spoofing attacks [9], [10]. Those RFCs enforce the Internet
applications like web browsers and mail clients to perform
normalization, case folding and security checks on any IDN
label before processing it in order to reduce the attack surface
[12], [13]. However, visual spoofing can still present with
many IDN domain names; on the other hand, most of the
internet applications failed to comply with the cited RFCs;
as stated in section III-A. Hence, attackers are still able to
visually spoof a legit domain name.
This paper is structured as follows: in section II, we present

in detail different IDN spoofing attack techniques that can be
used to lure a user, followed by section III in which we list
some existing mitigation techniques for the end user and the
registrar. In section IV, we present the proposed system along

978-1-5386-4922-0/18/$31.00 ©2018 IEEE

2

with its internal modules and used algorithms in each module.
Finally, in section V, we present the system evaluation on
a large dataset by monitoring the newly registered domain
names looking for IDN domain spoofing of social media
domain names and Majestic top 100K.
The main contributions of this paper are: (1) realizing a

working definition of IDN spoofing attacks, (2) how those
IDN domains are being presented in the URL bar in some In-
ternet browsers, (3) proposing a working solution that reports
IDN spoofing attacks, (4) evaluating the solution by reporting
the attacks against social media domain names and Majestic
top 100K, and (5) analyzing the reported IDN domains that
masquerade the social media domain names.

II. Visual Spoofing Based Attacks
The ultimate aim of domain name masquerading is to lure

a user to think that he or she is accessing a legitimate website
while they are accessing a decoy domain. This attack can
be achieved by creating a domain name that is a clone of
a real/legitimate domain address in such a way that the user
may not notice the difference [3], [5], [14]–[16]. Domain name
masquerading solely relies on user confusion. In this section,
we list some of the domain name spoofing attacks and a
summary for each attack type.

A. Domain Name Similarity Attacks
An attacker might try to register a slightly different domain

name than the legitimate one by altering single or multiple
characters (e.g., ’Gooogle.com’ instead of ’Google.com’). A
subset of this attack type is commonly called typosquatting
attack which targets the Internet users who incorrectly type a
website address into their web browser. As a result, the user
would be lured to visit this counterfeit website when they make
such a typographical error, or by mailing them the fake URL
through a phishing campaign [15], [16].

B. SubDomain Spoofing Attacks
This attack takes advantage of the fact that the subdomain is

displayed in the least significant label order. An attacker might
attempt to confuse the user by registering a third level domain
name that seems similar to the authentic domain name, then
by crafting a long URL string that contains the fake domain
name; a user may be lured into thinking that he or she is
accessing the legitimate domain name.

C. IDN Based Attacks
Using the concept of Internationalized Domain Names,

an attacker can register an IDN that looks exactly like the
victim’s domain name by exploiting the similarities between
the characters within one or more character sets (homoglyph
characters). This attack relies on the circumstance that some
characters’ glyphs are defined more than once while belonging
to different sets with different code points, despite the fact that
one of Unicode’s primary goals is unification. For example; the
Latin small letter ’o’ U+006F can be confused with the Cyrillic
small letter ’о’ U+043E, the Greek small letter omicron ’ο’
U+03BF and the Myanmar letter wa ’ဝ’ U+101D [14]. [3].

1) Single Script Spoofing: The fake IDN domain’s charac-
ters are inherited from the same character set. An attacker will
attempt to find a character set that has all needed characters to
register the claimed IDN domain. Cyrillic, Latin, and Greek
scripts are examples of the language scripts that could achieve
such aim. уаһоо.com is an example of single script spoofing
using Cyrillic character set [2]. Single script spoofing has
advantages on Mixed script spoofing as most of the browsers
won’t convert the IDN domain name to its Punycode form as
described in the section III-A.
2) Mixed Script Spoofing: In given circumstances, if the

attacker was not able to find all the needed homoglyph
characters in one character set (single language script) or
the suggested domain name had been already registered, the
attacker will have to widen the search scope by traversing
all available homoglyph characters in different character sets
to compose the malicious domain name. For example, the
attacker may be able to easily construct 15 different com-
binations of google.com by replacing the ’O’ character with
the mentioned homographs. This results in IDN domains with
mixed character sets or language scripts (i.e. gоοgle.com uses
ASCII, Cyrillic and Greek scripts) [3], [6], [7]
3) Punycode Spoofing: This attack works on the fact that

most of the end user application would convert the IDN
domain to its ASCII format - Punycode form - using the
ToAscii method [11]. Thus an attacker will attempt to craft
a Unicode domain name which has a Punycode form that is
similar to a legitimate domain name. For example, 䕮䕵䕶
䕱.com will be converted to xn–google.com [14].
4) Syntax Spoofing: This attack is more dangerous than

regular character spoofing. An attacker might attempt to spoof
special characters that are used to compose a domain name
like a FULL STOP ’.’ or Forward SLASH ’/’ which is used
to compose a URL. For example, U+2215 (∕) DIVISION
SLASH is much similar a regular ASCII ’/’ in many fonts
[7].
For example, an attacker who owned a DNS

server can register IDN domain name called
facebook.com∕home.<XXXX>.com using the DIVISION
SLASH and most of the currently available Internet browsers
will parse this domain and convert it to its Punycode
form facebook.xn–comhome-ef0d.<XXXX>.com. Although
homoglyphs for those particular characters are banned in the
RFC, most browsers are still processing part of them as per
section III-A.

III. IDN Visual Spoofing Attack Mitigation Techniques
Most of the visual spoofing attacks can be mitigated at the

domain registry side, while others must be mitigated at the
user agents (For example browsers, email clients, and other
programs that display and process URLs). The registry has
most data available about the alternatives registered names
and can handle that information most efficiently at the time of
registration. However, this will require significant processing
from the registry side and may complicate the domain name
registration process. On the other hand, the registry can not
prevent an attacker attempting to register a 3rd or 4th level

3

domain name, notably, if the attacker is using syntax spoofing
attack. Hence, mitigation at the user agent side is needed as
well.
In this section, we are listing most of the existing tech-

niques that may help to identify and mitigate IDN domain
masquerading at the user agents - web browsers mainly, and
by using centralized monitoring solutions.

A. User Agents
Web browsers are the primary connection to the Internet,

and multiple applications are relying on them to function.
That makes the browser’s security very critical, and it may
be the last resort before being exploited. Web browsers such
as Microsoft Internet Explorer, Mozilla Firefox, and Apple
Safari are pre-installed on almost all operating systems. All of
them are trying their best to improve their security to help the
end user from recognizing suspicious web pages that could
lead to a malicious domain [17]–[19]. For example, Chrome
offers Safe Browsing2 which prevents malwares and phishing
campaigns by downloading a list of information to the browser
about sites that may contain malicious software or are engaged
in phishing activity.
Regarding IDN visual spoofing detection, most user agents

will convert the IDN domain in the URL bar to its Punycode
format; for example, http://уаһоо.com will be converted to
http://xn–80a2aar51d.com; when a user attempts to access that
webpage. Each browser3 will, however, behave differently
when it comes to the IDN script type. If the provided domain
name is all in Latin, Firefox will not convert it to the Punycode
format [20].
We evaluated some Internet browsers to check their behav-

ior by providing to them different IDN labels. After that, we
captured their response to see if they are going to convert the
provided IDN labels to their Punycode format or not; as listed
in Tables II,III. For example, if the provided IDN domain’s
type is a single script most of the browsers3 will not convert
it to its Punycode format as shown in Table I, on the other
hand, if the provided IDN domain is Mixed script all of them
will convert it to its Punycode form as listed in Table II

TABLE I: Single Script IDN to Punycode Conversion

Script IDN Domain Firefox Chrome Safari IE
Latin eläketurvakeskus.net 7 7 7 3
Greek вновостях.net 7 7 3 3
Cyrillic уаһоо.com 7 3 3 3

TABLE II: IDN Mixed Script to Punycode Conversion

Scripts IDN Domain Firefox Chrome Safari IE
Latin, Greek amazοn.com 3 3 3 3
Greek,Cyrillic gоοgle.com 3 3 3 3
Latin, Cyrillic goоglе.com 3 3 3 3

2https://support.google.com/chrome/answer/99020?hl=en
3Firefox 57.0 (64-bit) || Chrome 61.0.3163.100 (Official Build) (64-bit) ||

Safari 11.0 (12604.1.38.1.7) || IE 11.0.9600

In terms of the RFC compliance, many Internet browsers3
failed to follow the security standards while they are validating
an IDN label. Most of them are violating one or more of
Label Validation rules that are defined in section 4.2. in the
RFC [9]. For example, Firefox processes the banned Unicode
character ’U+2024’ (One Dot Leader)4; while all of them
would violate the BIDI rule [21] when it comes to Arabic
Tashkeel [22]; for example, they will process faceَbook.com
label which contains a Right-To-Left character ’U+064e’ (the
Arabic Fatha)5. Referencing the RFC [21], any Right-To-Left
label shouldn’t contain any Left-To-Right characters. Table III
contains a list of some not valid IDN labels and the result of
each browser that process those labels.

TABLE III: RFC Compliance - Invalid Labels Processing

Unicode Char IDN Domain Firefox Chrome Safari IE
ARABIC FATHA faceَbook.com 3 3 3 3
ONE DOT LEADER www․era.net 3 7 7 7

An advanced user can change browsers’ default behavior
when it comes to IDN domain processing. For example, Fire-
fox can be modified by tweaking the ”about:config” settings
to enforce the Punycode conversion for any supplied IDN
label regardless their script group (character sets). Another
technique could be used by installing one of the available
plugins that block or allow IDN domains. For example, IDN-
Safe6 can be used to fully prevent IDN domains and whitelist
what is needed.
Another web plugin was developed by Viktor Krammer to

detect and prevent IDN spoofing-based attacks called Quero7.
When a user attempts to access a given URL, Quero will
highlight the recognized IDN domain as well as it will display
the script groups (character sets) to the end user. If the IDN
Domain is not matching the RFC, then Quero will block the
access to that suspicious domain [17].
Tweaking the browser settings or even installing web plug-

ins will not adequately protect end users against IDN attacks
if the browser is not fully complying with the RFC [9], [10].
Web browsers have attempted various security fixes against
the IDN attacks. However, it is obvious that those attempts
are not sufficient to prevent the threats of the IDN attacks.

B. Monitoring Solutions
Unlike user agents, centralized monitoring solutions will

process the domain registry data to detect any violations
in newly registered domain names. That kind of solutions
will work by providing a list of target domain names to be
monitored; if they found any registered domain name that is
close enough to a domain in the provided target list, an alert
will be generated.
DNSTwist8 is one of the tools that can observer domain

name spoofing attempts. It can detect some attacks such as
4https://unicode.org/cldr/utility/idna.jsp?a=http://www․era.net
5https://unicode.org/cldr/utility/idna.jsp?a=http://faceَbook.com
6https://github.com/AykutCevik/IDN-Safe
7http://www.quero.at/
8https://github.com/elceef/dnstwist

4

typosquatting with high precisions through altering, removing,
adding or swapping characters for a given input domain name.
After that, DNSTwist will perform DNS query to check if
that new domain is registered or not. When it comes to IDN
domain name spoofing, DNSTwist will attempt to swap each
domain character with its corresponding homoglyph using its
homoglyph collision database. The main drawback with it is,
it has very limited homoglyphs in its collision database. Hence
the results are not accurate or comprehensive.
Homoglyph Monitoring System is another solution devel-

oped by Joseph Miller focusing only on IDN spoofing attacks
detection [23]. This system consists of four main modules: (1)
Glyph matching module that attempts to guess all homoglyph
possibilities in the Unicode landscape for all ASCII character
using an automated process, then a user interaction is required
for tuning purposes. (2) Attack vector matching module which
takes the target domain strings from the user to monitor it,
then it will iterate over all characters in the target string to
swap them with their Unicode homoglyphs using the existing
collision database to uniform ”attack vector strings” which
will be sent to the DNS Analyzer module. (3) DNS analyzer
module will query the generated ”attack vector strings” against
the DNS to check if any of attack vector strings are registered
(i.e., to check if there is an attempt to masquerade one of the
target domains). (4) Action module which alerting the admin
about the detected spoofing attempts. the main issue with
this system is the scalability as the more significant collision
database yield to higher DNS traffic would be as quoted below:

Depending on the number of homoglyphs in each
set, there could be hundreds of thousands of potential
attack vector strings [23]

Having a wide range of Unicode characters (2ˆ16 for the
narrow build and 2ˆ32 for the wide build) and the existence
of Homoglyphs, made it highly challenging to maintain a
comprehensive and accurate Homoglyoh collision database.
A lot of attempts have been made to solve this problem.
One of the solutions was created by Narges Roshanbin and
James Miller to find existing homoglyphs in the Unicode space
by using Normalized Compression Distance [24]. Another
method was implemented by Anthony Y. Fu, Xiaotie Deng,
and Liu Wenyin by constructing a Unicode character similarity
list (UC-SimList) based on character visual and semantic
similarities using a nondeterministic finite automaton [25].
The Unicode Consortium had maintained their Unicode

confusable list as well. This list contains the similarities
between the Unicode characters that can be used for IDN
Domain spoofing attacks [8], [26]. The main drawback with
the Unicode confusable list is, it contains a lot of Unicode
characters that are not allowed in the IDN domain, for ex-
ample, the Medium Mathematical Space ”U+205F” exits in
the list although it is not allowed to be used in constructing
any IDN Domain. Another issue is the list is not mentioning
many Unicode characters with their similarities, for example,
the similarity between å and a is not listed.

IV. Proposed IDN Detection System
To understand the existing problems in the previous sys-

tems, we have added a fuzzing module that fuzzes any given
domain name - the same technique used in the existing
tools (DNSTwist and Homoglyph Monitoring System [23]) to
generate all possible IDN attack vector strings. Then we added
”yahoo.com” and ”google.com” to the fuzzing list to generate
all Unicode labels possibilities. We used a system with 3.1GHz
and 32GB of RAM to execute the fuzzing module. Then, we
captured the number of generated target strings as well as the
required time to produce them.

TABLE IV: Attack Vector Strings Timing and Efforts

TargetDomain charsets Posible Strings Time#
yahoo.com Latin 7 M 4.4 sec
yahoo.com Latin,Greek,Cyrillic 35 M 25 sec
yahoo.com All 70 M 61.6 sec
google.com Latin 86 M 104.2 sec
google.com Latin,Greek,Cyrillic 273 M 275 sec
google.com All - -

We’ve found that, when we used the Latin homoglyphs only
to generate the attack vectors strings (fuzzing) of yahoo.com,
the execution remained for 4.4 seconds and produced 7 Million
attack vector possibilities. If we used all homoglyphs in the
Homoglyphs database, fuzzing yahoo.com required almost 61
seconds with 70 Million attack possibility as per Table IV.
Hence it will need 70 Million DNS query to check if any of
those strings are registered or not under one TLD only. On
the other hand, when we tried to fuzz ”google.com” using all
exiting homoglyphs, the system crashed. We concluded that
this approach is not feasible.
The proposed system was designed in a way that resolves

homoglyph collision and system scalability problems to get
both accurate and scalable detection capabilities. This can be
accomplished by employing the following design improve-
ments:
1) Instead of generating all possible strings for a given

domain name, the systems will use a dataset of all newly
registered domain names and pivot it as a reference for
comparison.

2) Instead of generating all homoglyphs for an ASCII
character. The collision database will contain only the
Unicode characters that have been used in the registered
domains. Any newly registered IDN domain name with
a Unicode character that is not observed before must be
added to the Homoglyph collision database.

3) Adding analytics engine to identify and categorize the
malicious domains.

Based on the above design decisions, the proposed system
will download given DNS zone files, to extract the newly
registered Punycode domains - domains with Unicode char-
acters. Then, it will convert them to their Unicode form to
elicit all the Unicode characters. Next, it will replace all the
Unicode characters with their ASCII Homoglyphs producing
all spoofing possibilities - attack vector strings. After that, the
system will compare the resulted possibilities with the domains
in the target domain list; if there is a similarity identified,

5

Fig. 1: Proposed IDN Monitoring Solution - System Design

the corresponding Punycode will be marked as a suspicious
domain name. Finally, the solution will promote a suspicious
domain to malicious if the suspicious domain is not hosted on
IP Address space of the target domain or it is not registered
by the target domain’s organization.
For example, instead of generating all Unicode permutations

for ”google.com” the system will iterate over the newly
registered Punycodes to reduce them by using the homoglyph
collision database to get the possible ”target attack strings”
(e.g., xn–ggle-qqaa.com with IDN form ”góógle.com” will be
converted to ”google.com” after substituting all Unicode char-
acters with their ASCII homoglyphs). Then the system will
compare the resulted ”target attack strings” against the target
domain list which has ”google.com” to identify the suspicious
Punycode. If the system found one (xn–ggle-qqaa.com), the
system will check the IP address and the whois registrant
organization of that suspicious domain to see if it’s owned
by the target domain ”google.com” or not.
The proposed system consists of six main components:

1) The Punycode Extractor Module, 2) Punycode Analyzer
Module, 3) Homoglyph Analyzer Module, 4) Fuzzer Module,
5) Spoofing Detection Module, and 6) Analytics Module. In
this section, we will describe in details the system components
and proposed IDN detection algorithms, as shown in Figure1.

A. Punycode Extractor Module
A daily copy of DNS zone files can be accessed and

downloaded from publicly available organizations such as
ICANN9 and Verisign10. Those zone files contain a list of all
registered domain names and their corresponding NS servers.
An average of 100k .com and 10k .net of domain names are

being registered on a daily basis; some of them are Punycode
domains - domain names with Unicode characters - almost
~1170 domains. Figure 2 shows the registered Punycode

9https://czds.icann.org
10https://www.verisign.com

domain names during the system monitoring period. The
Punycode Extractor, the first module, will process and extract
all newly registered Punycode domain names and forward it
for further analysis as described in Algorithm 1.

Fig. 2: Punycode Domains Registration Timeline, 2017

As shown in Figure 2, an average of 32000 Punycode
domain names are being registered on each month11. Those
domains are being extracted and indexed in the Punycode DB
as will be shown in the next stage.

B. Punycode Analyzer Module
The input to this module is all the newly registered Puny-

code domains. This module will convert Punycode domains to
their IDN equivalent form. For each IDN domain, the analysis
module will extract the Unicode characters; then it would
determine the domain ScriptType (i.e., Single or Mixed). After
the extraction is performed, all information for each Punycode
domain are stored, as metadata in the Punycode database; as
shown in algorithm 2.
For example, the Punycode ”xn–ggle-qqaa.com” will be

converted to ”góógle.com”, then it will be sent for analysis
11Feb is being ignored as the solution started to function from Feb 22nd

6

Data: Downloaded Zone Files
Result: New Punycode Domains
new_punycodes;
for domain in zonefile do

if domain.starts.with(’xn–’) then
if domain not in old_punycode_db then

new_punycodes += domain;
old_punycode_db += domain;

end
end

end
Algorithm 1: Extracting New Punycodes

to extract the Unicode characters which are ’ó,’ and ’ó’. After
that it the module will check the extracted Unicode character
sets, which in this case is LATIN for both of them. In the end,
”xn–ggle-qqaa.com” will be marked as a SingleScript.

Data: New Punycode Domains
Result: Analyze and Index New Punycode Domains
unicode_chars;
metadata;
for punycode in punycodes do

idn_format = to.unicode(punycode);
unicodes = extract_unicode_chars(idn_format);
for unicode_char in unicode_chars do

scripts += get_script_name(unicode_char);
unicode_chars += unicode_char;

end
if length(unique(scripts)) > 1 then

metadata[punycode] = Mixed;
else

metadata[punycode] = Single;
end

end
save_to_PunycodeDB(metadata);

Algorithm 2: New Punycode Analyzer

C. Homoglyph Analyzer Module
The primary objective here is to build up a Homoglyph

collision database that contains a list of all used Unicode
characters and their similarities–Homoglyphs. This module
takes the Unicode characters that were extracted from the
newly registered domains and verifies if there are any Unicode
characters that have not been seen before using Algorithm 3.
Then it sends all the newly observed Unicode characters for
recognition.
The rogue character recognition process is performed using

two stages: (1) Check if the Unicode character has a similarity
in the Unicode confusable list [8]. (2) A manual process is
incorporated in which a human analyst needs to verify the
result. The analyst may also mark the identified Unicode
character as a combining character that can be used along
with another character to change its appearance. For example,
the umlaut character if it combined with a will result in ”ä”,
as described in algorithm 4.

Data: Extracted Unicodes, HomoglyphDB
Result: Get New Unicode Characters
new_unicode_chars;
for unicode_character in unicode_characters do

if unicode_character not in HomoglyphDB then
new_unicode_chars += unicode_character ;

end
end

Algorithm 3: New Unicode Extractor

Data: New Unicodes and Unicode_Similarity_List
Result: Determine Similarities
data;
for unicode_character in unicode_characters do

similarities =
Unicode_Similarity_List.get(unicode_character)
print_to_analyst(unicode_character, similarities);
data[unicode_character] = read(similar_character);
data[unicode_character] += read(similarity_level);

end
save_to_HomoglyphDB(data);

Algorithm 4: Character Recognition

D. Fuzzer Module
Using the Punycode database and the Homoglyph DB;

the Fuzzer module will iterate over all newly registered
Punycodes, then it will replace the Unicode characters in the
Unicode equivalent form (IDN), with their ASCII similarities
to generate the possible attack vector strings. Those strings
will be passed to the Spoofing Analyzer module, as described
in algorithm 5.
For example, the Punycode ”xn–e-dla47fa3625aa.com” -

with IDN form "ɡᴏᴏɡłe.com" - has five Unicode characters
which are 'ɡ', 'ᴏ', 'ᴏ', 'ɡ', and 'ł'.The module will use those
characters to query the Homoglyph DB to find their ASCII
similarities. Then it will substitute all those Unicode characters
with their similarities. In the end, the module will return one
possible attack vector string which is ”google”.

Data: PunycodeDB, HomoglyphDB
Result: attack_vector_strings
attack_vector_strings;
for punycode_domain in punycode_domains do

ascii_format = to.ascii(punycode);
for unicode_char in ascii_format do

homoglyphs += get_homoglyphs(unicode_char);
for homoglyph in homoglyphs do

attack_vector_strings+= replace(unicode_char,
homoglyph);

end
end

end
Algorithm 5: Punycode Fuzzer

E. Spoofing Detection Module
This is the main module in the system, as the primary aim

of the proposed solution, is to detect Domain Spoofing in the

7

Internationalized Domain Names. The potential attack vector
strings –fuzzed Punycode domains –will be input to this
module to check if any of the identified strings match a domain
in the target Domain DB. If there is a match the corresponding
Punycode will be marked as a suspicious domain name and
will be sent for deep analysis to be checked if it is malicious
or not. Any suspicious domains will be tagged as malicious
if:
1) The domain is hosted on IP address that doesn’t belong

to the authentic domain address space, and
2) The registrant Organization is not the same as the

authentic domain name
For example, the spoofing detection module will take ”xn–e-

dla47fa3625aa.com” and its possible attack vector string which
is [”google”] after the substitution. Then it will compare the
attack vector string against the Target Domain DB, which
has ”google.com” in its list. As a result, the Punycode ”xn–
e-dla47fa3625aa.com” will be marked as suspicious, and it
will be sent for more analysis. The result of the analysis12
will show that ”xn–e-dla47fa3625aa.com” is hosted on a
rouge IP address ”34.202.122.77”, and it does not belong
to Google.com address space, as well as the registrant or-
ganization is ”DYNADOT LLC” which is not matching with
google.com registrant organization (Google LLC). That’s why
”xn–e-dla47fa3625aa.com” will be promoted from suspicious
to a malicious domain name.

Data: Attack Vector String, Target_Domain_DB
Result: Alerts
for string in attack_vector_strings do

if string in TargeT_Domain_DB then
raise_alert(string);

end
end

Algorithm 6: Spoofing Detection

F. Analytics Module
The analytics module has an API interface to the sys-

tem components, including the Punycode and Homoglyph
databases. Also, it is the integration gateway with the external
modules Whois databases13, Fuzzy Hash module and Virus-
Total14. Also, the analytics module has its web browser, that
would simulate a user accessing a given URL, and, of course,
it can do DNS queries15.
The analytics module would help the analyst to detect an

active phishing attack - a spoofed domain hosts a webpage
looks exactly like the target domain webpage - as well as it
would help to detect if there is a phishing campaign against
any domain in Target Domain List. In the end, it may give
some insights about the trends in IDN domain registrations,
and the attack groups. The analytics module as well can
provide threat intelligence feeds to detection and prevention

12Analysis was kicked off on 2018-04-24
13https://www.whoisxmlapi.com
14https://www.virustotal.com
15https://github.com/YahiaKandeel/netutils/blob/master/resolver.py

systems such as IPS/IDS and Security Information and Event
Management (SIEM) solutions.

V. System Evaluation
Using the proposed solution, we started to monitor newly

registered domain names under the TLDs .com and .net from
23rd Feb 2017 to 24th October 2017. During that period
~41500 Punycode domain names have been registered. We
have narrowed our monitoring and attack detection for (1)
Majestic top 100 Thousand16 and (2) some of the social media
domain names17. In this section, we will provide detailed
results generated by the monitoring solution.

A. Social Media Monitoring
The proposed system started to monitor the social media

domain names from the 23rd of Feb, 2017. Almost every single
day there was an alert triggered indicating that a suspicious
IDN domain has been registered. Interestingly all of them are
marked as malicious as 1) all of them are hosted on a rouge
IP address - IP address not owned by the real domain, and 2)
the registrant organization in whois data is not matching those
in the real domains.
For example, the Punycode ”xn–facbok-rh8bmg.com”

was registered on 12-04-2017 and its Unicode form is
facẹboọk.com - looks like facebook.com after substituting all
Unicode characters with their similarities - was reported as
a suspicious domain name. After that, It was sent for deep
analysis12, and we found that it was hosted on 103.18.6.118
and the registrant organization was ”GMO INTERNET, INC”.
That’s why this domain has been tagged as malicious. For
further clarification, Some of the captured alerts are listed in
the appendix - Tables VII, VIII.

Fig. 3: Most Targeted Domains from Feb till Oct 2017

For demonstration purposes, the result of the malicious
domains had been aggregated and grouped by Target Domains

16https://blog.majestic.com/development/majestic-million-csv-daily
17yahoo, linkedin, snapchat, whatsapp, pinterest, twitter, instagram,

youtube, slack, google, hotmail, outlook, facebook, reddit

8

to graph the most targeted social domains in the stated period.
As shown in Figure 3, the detection system has identified
225 malicious IDN domains that have been registered to
masquerade the social media domain names. The top spoofing
attempt was for facbook.com which was masqueraded 74
times; while google.com came in the 2nd place to be spoofed
by 47 times.
Interestingly, all captured social media spoofing attempts

were using single script IDN domains, and most of them
are utilizing the Latin language script – as presented in
the appendix - Table VII. Because of most browsers except
Microsoft Internet Explorer will not convert those fake IDN
domains to their equivalent form; the user most likely will
be lured into accessing malicious webpage instead of the
legitimate one.
Diving deep in the analysis, all registered fake IDN domains

had been grouped by their Whois registrar. We have found that
NAMECHEAP and GoDaddy were the top used registrars as
per Figure 4. Maybe they are the best choice to register a
spoofed IDN domain name. Another notice is, 21 of those
IDN domains’ data were missing as their owners didn’t
complete the registration process. We have found as well;
some malicious IDN domains had been registered more than
once during the monitoring period. For example, ”xn–fcebk-
j11bxma.com” it was captured for the first time on 2017-06-23,
and the second time was on ”2017-09-03”. It is possible that
the domain had been taken down by a legal entity.

Fig. 4: Malicious IDN Domains - Registrars

In order to profile the registrants (attackers) we started to
query the malicious domains against the whois database to
extract the registrant telephone number, then we grouped the
results based on that telephone number. We found that the
number +5078365503 were the top used number by 49 out of
225 times and the next one, was +17208009072 by 20 times.
What has been noticed as well, that some of the mali-

cious domain names were redirecting our hits to the au-
thentic websites (e.g., xn–yaoo-h84a.com were redirecting to
www.yahoo.com). Although these fake domains are catego-
rized as phishing website by VirusTotal. We concluded that

behavior as, during a targeted phishing campaign, it is impor-
tant for an attacker not to be detected by site categorization
tools to maintain the domain and IP address reputation in order
not be blocked by the anti-malware or anti-phishing security
client agents. Hence, the attacker can whitelist a specific IP
address ranges for those whom they are targeting, and for the
rest, they would be redirected to the authentic website.
During the analysis period, we observed that some malicious

domains were sharing the same IP address, as listed in table V.
This could be additional evidence that the same attacker/group
is making use of multiple spoofed IDN domain to trick users
to take unsafe actions.

TABLE V: Malicious IDN Domains - Top IP Addresses

IP Address Count Owner Organization
198.54.117.200 12 Namecheap, Inc.
91.195.240.82 11 SEDO GmbH
72.52.4.120 6 Akamai Technologies, Inc.
103.224.182.244 4 TRELLIAN-AU
103.18.6.118 3 RUNSYSTEM-VN

To validate the captured results, in 31-03-2018 we have
checked the malicious IDN domains against VirusTotal; to see
if it was able to identify the reported IDN domains as malware
or phishing domain names. What we have found is that 102
out of the 225 domains are reported as phishing domains, and
97 out of the 225 domains were hosting malicious URLs.

B. Majestic Top 100 Thousand

Fig. 5: Suspicious IDN Domains Creation Timeline

We have monitored as well all domain names listed in Ma-
jestic Top 100K for seven months. We found that an average
of 600 suspicious IDN domain names has been registered on
a monthly basis - as shown in Figure 5. That could indicate
the effectiveness and prevalent of the IDN-based attacks. Due
to the number of whois-query limitations, we opted not to
validate if the suspicious domains were malicious or not.
Instead, we performed a string analysis on the suspicious
domains only to infer the most character set (language script)
script used in composing those domains as well as the most
spoofed ASCII character.
From the analytics module, we constructed a list that

indicates the most used character set (language Script) to spoof
a domain name, as shown in Figure 6. From that, we observed

9

Fig. 6: Most Used Character Sets

that the attackers prefer to use the Latin’s character set to
masquerade a legit domain name.
We retrieved a list of all used Unicode characters from the

HomoglyphDB. Then for each Unicode character, we counted
how many times it was used in the reported suspicious IDN
domains - Unicode domains that are registered in order to
masquerade the Majestic top 100K. Table VI lists the top ten
used Unicode characters. From that table, we can see that the
Unicode letter ” é ” has been used by 939 times, and ” ö ”
was used by 567.

TABLE VI: Top 10 Unicodes Used in Masquerading Attacks

Unicode Description Count#
é Latin Small Letter E With Acute 939
ö Latin Small Letter O With Diaeresis 567
í Latin Small Letter I With Acute 465
ä Latin Small Letter A With Diaeresis 460
ı Latin Small Letter Dotless I 422
ü Latin Small Letter U With Diaeresis 401
á Latin Small Letter A With Acute 350
ó Latin Small Letter O With Acute 326
ø Latin Small Letter O With Stroke 324
å Latin Small Letter A With Ring Above 278

Based on the above results, a histogram of the most spoofed
ASCII character was assembled as shown in Figure 8. This
figure presents the ASCII character and how many times it
was spoofed, and as such, it most likely to be used in a domain
spoofing and phishing attack. Figure 7 is about a histogram
of frequency of different characters in the Majestic Top 100K.
From that figure, we can see the e, a, o, i are the most used
character for assembling a domain name.
As shown in Figure 8, the most spoofed ASCII characters

are the vowels. Letter ”e” came on the top list of spoofing
attempts by more than 2700 times. On the other hand, the
least spoofed character was ”q” by seven times.

VI. System Limitation
Currently, the proposed solution will detect only the ma-

licious IDN domain names which are registered under the
.net and .com TLDs. We can extend our monitoring scope
to include more TLDs such as .info and .org. Another modi-
fication can be done to enhance and speed up the Homoglyph

Fig. 7: Majestic ASCII Character Histogram

Fig. 8: Most Spoofed ASCII Character

detection process by deploying OCR mechanism as part of
homoglyph identification process instead of depending on
human interactions and feedback.
Also, we can add micro-services to enhance the detection

process such as:
1) Fuzzy Hashing18 module, to check if the hosted webpage

on the malicious domain looks the same as the authentic
one.

2) A typosquatting detection module can be added to
the system, by calculating the Levenshtein distance19
between the target domains and the newly registered
domains.

3) A severity level can be calculated based on the similar-
ity between the malicious IDN domain and the target
domain.

Besides to those micro-services, a correlation engine can be
added to correlate between the past and new events to detect
which are groups/entities that are launching those IDN attacks
against the target domain names.

VII. Conclusion
Internationalization in Domain Names (IDN) inherited some

of Unicode security risks, by allowing Homograph in domain
names. Attackers are abusing those risks and spoofing a
domain name that visually appears legitimate while it is a
malicious domain and used in social engineering and phishing
attacks.
IDN spoofing attacks target the well-trained end user,

making phishing identifications by well-trained human eyes,
18https://ssdeep-project.github.io/ssdeep/index.html
19http://rosettacode.org/wiki/Levenshtein_distance

10

sometimes, almost impossible. That would elevate the IDN
Domain Name spoofing to one of the most critical types of
attacks.
The problem, however, is not in the of Homographs concept.

The lack of browsers URL verification and user alert is one
of the reasons that could facilities this attack. Some browsers
do not fully comply with the proposed Homographs RFC [9],
[10] leaving millions of users at risk of being a victim of this
attack.
In this paper, we explained the IDN attack types and the

browser behavior for each attack type. Then, we proposed a
solution to detect IDN based attacks. After that, we have eval-
uated the solution by detecting the newly registered domains
that masquerade Majestic Top 100K, and some of the social-
media domains.
The result of the proposed solution showed that an average

of 550 suspicious IDN domains are being registered on a
monthly basis, and most of them are utilizing the Latin
character set. Hence most of the available browsers will not
convert those IDN domains to their Punycode form, that could
explain why users may be lured to access the fake website.
The analysis result, also, showed that attackers might prefer a
particular registrar to host their malicious IDN domain.

References
[1] M. J. Duerst, “Urls and internationalization,” December 1996. [Online].

Available: http://lists.w3.org/Archives/Public/uri/1996Dec/0038.html
[2] T. U. Consortium, “Unicode standard version 10,” June 2017. [Online].

Available: http://www.unicode.org/versions/Unicode10.0.0/
[3] X. Zheng, “Phishing with unicode domains,” April 2017. [Online].

Available: https://www.xudongz.com/blog/2017/idn-phishing/
[4] E. Gabrilovich and A. Gontmakher. (2002)

The homograph attack. [Online]. Available:
http://www.cs.technion.ac.il/%7Egabr/papers/homograph_full.pdf

[5] ICANN, “Statement on idn homograph attacks and request
for public comment,” February 2005. [Online]. Available:
https://www.icann.org/news/announcement-2005-02-23-en

[6] “Unicode character database.” [Online]. Available:
http://www.unicode.org/ucd/

[7] M. Davis and M. Suignard, “Unicode security considerations,”
September 2014. [Online]. Available: http://unicode.org/reports/tr36

[8] T. U. Consortium”, “Unicode confusables.” [On-
line]. Available: http://www.unicode.org/Public/security/revision-
03/confusablesSummary.txt

[9] J. Klensin, “Internationalized domain names in applications
(idna): Protocol,” RFC 5891, 2010. [Online]. Available:
https://tools.ietf.org/html/rfc5891

[10] A. Costello, “Ipunycode: A bootstring encoding of unicode for
internationalized domain names in applications (idna),” RFC 5891,
2003. [Online]. Available: https://tools.ietf.org/html/rfc5891

[11] P. Hoffman and A. Costello, “Internationalized domain names
in applications (idna),” RFC 3490, 2003. [Online]. Available:
https://tools.ietf.org/html/rfc3490

[12] M. Davis and M. Suignard, “Unicode idna compatibility processing,”
June 2017. [Online]. Available: http://www.unicode.org/reports/tr46/

[13] M. Davis and K. Whistler, “Unicode normalization forms,” May 2017.
[Online]. Available: http://www.unicode.org/reports/tr15/

[14] S. Patil, “Spoofing around the urls,” September 2009. [Online].
Available: https://www.symantec.com/connect/blogs/spoofing-around-
urls

[15] K. M. Slavitt, “Protecting your intellectual property
from domain name typosquatters,” 2004. [Online]. Avail-
able: http://corporate.findlaw.com/intellectual-property/protecting-your-
intellectual-property-from-domain-name.html

[16] “Typosquatting: How 1 mistyped letter could lead to id theft.” [On-
line]. Available: http://www.bankrate.com/finance/credit/typosquatting-
identity-theft.aspx

[17] V. Krammer, “Phishing defense against idn address spoofing attacks,”
2006. [Online]. Available: http://www.quero.at/papers/idn_spoofing.pdf

[18] US-CERT, “Securing your web browser,” September 2015.
[Online]. Available: https://www.us-cert.gov/publications/securing-your-
web-browser

[19] F. Comity, “Idn display algorithm,” April 2017. [Online]. Available:
https://wiki.mozilla.org/IDN_Display_Algorithm

[20] P. Hannay and C. Bolan, “Assessment of internationalized domain
name homograph attack mitigation,” in Australian Information Security
Management Conference, Perth, Western Australia, December 2009.

[21] C. Karp, “Right-to-left scripts for idna,” August 2010. [Online].
Available: https://tools.ietf.org/html/rfc5893

[22] T. U. Consortium, “Unicode arabic extended-a,” 2017. [Online].
Available: http://unicode.org/charts/PDF/U08A0.pdf

[23] J. A. Miller, “Homoglyph monitoring,” U.S. Patent 13/659 577, 16,
2014.

[24] N. Roshanbin and J. Miller, “Finding homoglyphs - a step towards
detecting unicode-based visual spoofing attacks,” in International Con-
ference on Web Information Systems Engineering, Sydney, Australia,
October 2011.

[25] A. Y. Fu, X. Deng, and L. Wenyin, “Regap: A tool for unicode-based
web identity fraud detection,” Hong Kong SAR, P. R. China, 2006.

[26] T. U. Consortium”, “Unicode confusables.” [Online]. Available:
https://unicode.org/cldr/utility/confusables.jsp

11

Appendix

TABLE VII: IDN Domain Name Spoofing in September 2017
Date Target Domain Fake IDN Domain Punycode Format Unicode# ScriptType CharacterSet
9/1/17 google ɡᴏᴏɡłe.com xn–e-dla47fa3625aa.com 5 Single LATIN
9/4/17 instagram instɑgrɑm.com xn–instgrm-obdc.com 2 Single LATIN
9/5/17 facebook fạcebọọk.com xn–fcebk-j11bxma.com 3 Single LATIN
9/7/17 google góógle.com xn–ggle-qqaa.com 2 Single LATIN
9/7/17 instagram iṇstagram.com xn–istagram-i99c.com 1 Single LATIN
9/9/17 reddit reddît.com xn–reddt-8sa.com 1 Single LATIN
9/9/17 google gôógle.com xn–ggle-qqaf.com 2 Single LATIN
9/9/17 facebook fäcebóók.com xn–fcebk-gra2ia.com 3 Single LATIN
9/9/17 instagram instagràm.com xn–instagrm-5ya.com 1 Single LATIN
9/9/17 twitter twïttër.com xn–twttr-qsaz.com 2 Single LATIN
9/9/17 youtube yơutube.com xn–yutube-3wb.com 1 Single LATIN
9/9/17 youtube yóutube.com xn–yutube-bxa.com 1 Single LATIN
9/9/17 snapchat snapchät.com xn–snapcht-bxa.com 1 Single LATIN
9/10/17 twitter twıtter.net xn–twtter-q9a.net 1 Single LATIN
9/15/17 instagram iṇstagram.com xn–istagram-i99c.com 1 Single LATIN
9/16/17 facebook faceboök.com xn–facebok-f1a.com 1 Single LATIN
9/20/17 google googl�.com xn–googl-0e9c.com 1 Single LATIN
9/21/17 instagram instagrâm.com xn–instagrm-oza.com 1 Single LATIN
9/21/17 linkedin linķedin.com xn–linedin-6gb.com 1 Single LATIN
9/22/17 instagram instágràm.com xn–instgrm-ewag.com 2 Single LATIN
9/22/17 instagram ìnstàgram.com xn–nstgram-bwa8h.com 2 Single LATIN
9/22/17 instagram instàgram.com xn–instgram-2ya.com 1 Single LATIN
9/26/17 facebook facebooḱ.com xn–faceboo-uw3c.com 1 Single LATIN
9/26/17 facebook fácébóók.com xn–fcbk-5na3c0da.com 4 Single LATIN
9/27/17 facebook faceḇooḵ.com xn–faceoo-6g7b8o.com 2 Single LATIN

TABLE VIII: IDN Suspicious Domain Name Analysis - 01/04/2018

Domain Fake IDN Domain WhoisOrg Registrar IPAddress Redirect Phighing? Mal.URLs#
facebook xn–faceoo-6g7b8o.com Domains By Prox GoDaddy.com, LLC 50.63.202.41 False True 1
facebook xn–faceboo-uw3c.com Above.com Domai ABOVE.COM PTY LTD. 184.168.221.55 False True 1
facebook xn–fcbk-5na3c0da.com G2 GoDaddy.com, LLC 50.63.202.48 False False 0
instagram xn–instgrm-ewag.com None - - False False 0
instagram xn–nstgram-bwa8h.com None - - False False 0
instagram xn–instgram-2ya.com None - - False False 0
instagram xn–instagrm-oza.com None Cronon AG - False False 1
linkedin xn–linedin-6gb.com Domains By Prox GoDaddy.com, LLC 50.63.202.54 False True 1
google xn–googl-0e9c.com Domain Protecti Name.com, Inc. 69.195.124.232 False True 1
facebook xn–facebok-f1a.com None OVH, SAS - False False 0
instagram xn–istagram-i99c.com WhoisGuard, Inc NAMECHEAP INC 199.188.200.146 False True 1
twitter xn–twtter-q9a.net None - - False False 0
reddit xn–reddt-8sa.com Domain Protecti Name.com, Inc. 91.195.240.82 False False 0
google xn–ggle-qqaf.com None GoDaddy.com, LLC 109.66.14.53 False True 1
facebook xn–fcebk-gra2ia.com Domain Protecti Name.com, Inc. 91.195.240.82 False True 1
instagram xn–instagrm-5ya.com Domain Protecti Name.com, Inc. 91.195.240.82 False True 1
twitter xn–twttr-qsaz.com Domain Protecti Name.com, Inc. 91.195.240.82 False False 0
youtube xn–yutube-3wb.com None GoDaddy.com, LLC 50.63.202.19 False True 1
youtube xn–yutube-bxa.com Domain Protecti Name.com, Inc. 91.195.240.82 False True 1
snapchat xn–snapcht-bxa.com Domain Protecti Name.com, Inc. 91.195.240.82 False False 0
google xn–ggle-qqaa.com None GoDaddy.com, LLC 184.168.221.49 False True 2
instagram xn–istagram-i99c.com WhoisGuard, Inc NAMECHEAP INC 199.188.200.146 False True 1
facebook xn–fcebk-j11bxma.com None UNIREGISTRAR CORP 104.31.85.139 False True 1
instagram xn–instgrm-obdc.com WhoisGuard, Inc NAMECHEAP INC 192.64.119.4 False True 1
google xn–e-dla47fa3625aa.com None DYNADOT LLC 34.202.122.77 True True 1

