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Abstract—Phishing attacks are becoming increasingly preva-
lent: 2016 saw more phishing attacks than any previous year on
record according to the Anti-Phishing Working Group. At the
same time, the growing level of sophistication of cybercriminals
must be understood for the development of effective anti-phishing
systems, as phishers have extensive control over the content
they serve to their victims. By examining two large, real-world
datasets of phishing kits and URLs from 2016 through mid-
2017, we paint a clear picture of today’s anti-phishing ecosystem
while inferring the higher-level motives and thought processes
of phishers. We analyze the nature of server-side .htaccess
filtering techniques used by phishers to evade detection by the
security community. We also propose a new generic classification
scheme for phishing URLs which corresponds to modern social
engineering techniques and reveals a correlation between URL
type and compromised infrastructure use. Our analysis identifies
measures that can be taken by the security community to
defeat phishers’ countermeasures and increase the likelihood of
a timely response to phishing. We discover that phishers have a
keen awareness of the infrastructure used against them, which
illustrates the ever-evolving struggle between cybercriminals and
security researchers and motivates future work to positively
impact online security.

I. INTRODUCTION

Phishing is a type of social engineering attack that seeks
to trick victims into disclosing account credentials or other
sensitive information through a fraudulent message (e.g. e-
mail) that leads to a website which impersonates a real orga-
nization. Attackers (phishers) then use the stolen data for their
own monetary gain [1], [2]. The global volume of phishing
attacks is on the rise: in 2016, the Anti-Phishing Working
Group (APWG) recorded over 1.2 million total attacks, more
than any previous year on record and a 65% increase over
2015 [3].

The behemoth scale of credential theft cannot be over-
stated. Between March 2016 and March 2017, malware and
(predominantly) phishing led to 1.9 billion usernames and
passwords being offered for sale on black market communities
[4]. While phishing attacks are conceptually simple, they
are difficult to effectively counter because phishers and anti-
phishing entities are engaged in an endless cat-and-mouse
game. The technological tools used by both are ever-evolving
in response to the other’s actions [5].

Phishing attacks are particularly damaging not only due
to their prevalence, but because their impact extends beyond
the individuals who are directly targeted. The organizations
being impersonated in such attacks (such as financial institu-
tions or e-mail providers) expend vast resources to minimize
their losses and must work together with security firms and
researchers to address the increasing level of sophistication
being observed in phishing. This gives rise to an anti-phishing
ecosystem comprised of many diverse entities working toward
the same goal of reducing the billions of dollars of annual
damage attributed to phishing [6].

In this paper, we portray the anti-phishing ecosystem as a
whole. We leverage two unique datasets to identify the key
players in this ecosystem and expose specific techniques that
phishers employ to avoid detection while maximizing their
return on investment. Ultimately, our goal is to obtain a clear
understanding of the current ecosystem, including phishers,
victims, and abuse-reporting entities. We propose immediate
solutions to counter sophisticated phishing attacks and iden-
tify future research directions for evaluating and improving
phishing countermeasures.

We first analyze a dataset of over 2300 real-world “phishing
kits” (retrieved by Cofense, Inc. between Q1 and Q2 2016)
to gain insight into the different server-side approaches that
phishers take to evade existing phishing site detection infras-
tructure, specifically focusing on filtering directives found in
.htaccess server configuration files. Many of these directives
allow us to identify security organizations commonly tar-
geted by phishers. Because phishing kits are ready-to-deploy,
reusable packages used to carry out phishing attacks, we are
also able to observe patterns in the distribution and adoption
of such kits across multiple attacks.

We then use over 170,000 phishing URLs (submitted to the
APWG during the first half of 2017) to identify the extent to
which compromised infrastructure and domains are used for
phishing. We propose an up-to-date URL classification scheme
and take a novel approach to combine URL classification with
domain age to fingerprint each phishing attack.

Analyzing the software and URLs of phishing kits allows us
to not only understand the goals of phishers, but also reveals
evasion techniques and allows each attack to be profiled. To
date, no detailed insight into the server-side evasion techniques
we discuss in Section IV has been published in the context of978-1-5386-4922-0/18/$31.00 c
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phishing, yet understanding these techniques can help anti-
phishing entities identify and blacklist attacks more quickly
and reliably [7]. Phishers also select the URLs that host their
attack sites, either in whole or partial form. These URLs are
often crafted to deceive victims [8], but they can also be
formulated to evade detection. With minimal effort from the
phisher, request filtering and cleverly formulated URLs can
dramatically bolster the effectiveness of a phishing attack; we
thus focus our study on these two areas.

Our immediate contributions can help organizations in-
volved in the fight against phishing consider the dynamics
within the entire anti-phishing ecosystem, understand what in-
fluences patterns in phishers’ URL and hosting selections, and
understand the nature and purpose of server-side filtering that
phishers employ. Our findings are the precursors to a larger
study that we will conduct to measure the true effectiveness of
phishers’ evasion techniques, motivated by the potential for a
more effective and timely incident response by anti-phishing
entities to ultimately improve the security of potential phishing
victims.

II. PHISHING ATTACK ANATOMY

To make a positive impact on the fight against phishing,
we must first familiarize ourselves with the nature of the
phishing attack, tools at the disposal of phishers, as well as
the industry’s defenses. We must then understand how phishers
respond to those defenses so that we can think ahead to what
might come next.

A. The Classic Phishing Attack

The stages of a typical phishing scenario are illustrated in
Figure 1. First, prior to involving any victims, an attacker
spoofs a website by copying its look and feel such that it
is difficult for an average user to distinguish between the
legitimate website and the fake one (0). This can be done using
a phishing kit, as discussed in Section II-D. Next, the attacker
sends messages (such as spam e-mails) to the user, leveraging
social engineering to insist that an action is needed [9] and
lures the user to click on a link to the phishing site (1). If
the victim is successfully fooled, he or she then visits the site
and submits sensitive information such as account credentials
or credit card numbers (2). Victims will often be shown a
reassuring confirmation message to minimize suspicion of the
attack after the fact. Finally, the phishing site transmits the
victim’s information back to the phisher (3), who will attempt
to fraudulently use it for monetary gain [10] either directly
(4a, 5a) or indirectly (4b, 5b).

B. Anti-Phishing Defenses

Phishing is a difficult problem to solve, as phishers are
becoming increasingly convincing when tricking users into
disclosing personal information. However, the industry has
developed security mechanisms that, if used alongside proper
phishing awareness training, can help users identify and avoid
fake websites [11].

Fig. 1. The classic phishing attack.

E-mail messages are a common starting point for typical
phishing attacks. Spam blacklists, heuristic filters, and report-
ing tools can be used to protect a user from potentially harmful
messages [6], [12]. Targeted attacks against specific individu-
als and organizations, known as spearphishing, are increasing
in pervasiveness and sophistication. Early identification of
suspicious behavior in communication can help thwart this
type of custom-tailored social engineering [13], [14].

In web browsers, using HTTPS with extended validation
(EV) SSL certificates and showing security indicators such as
the green lock or a user selected image are techniques that
website owners and browser developers can employ to posi-
tively identify sites as legitimate [15] and establish user trust,
thus distinguishing known sites from attack sites. Although
phishers are now commonly using standard SSL certificates
(e.g. via free services such as LetsEncrypt [16]), EV certifi-
cates require business verification and are thus harder to obtain
fraudulently. On the client side, native browser blacklists are
the first line of defense, as these are enabled by default in
major web browsers. Blacklists prevent phishing content from
being displayed to the user and instead generate a warning.
Heuristic filter suites such as toolbars or antivirus programs
can also be used for similar protection [17]. Such tools can
combine various data sources, including URL content, domain
age, search engine rankings [18], and page content [19]. Under
the hood, security companies also use a sophisticated network
of systems to track and respond to phishing threats (e.g.
by updating blacklists). The effectiveness of these technical
defenses hinges on early detection, which might be thwarted
by a clever phisher as we discuss in Section IV.

In the case of credential theft, even if a phishing attack
is carried out successfully, victim organizations can employ
multi-factor authentication schemes in an effort to mitigate
malicious login attempts [4].

C. Phishing Kits

A phishing kit is a unified collection of tools used to deploy
a phishing site on a web server [20]. Some phishing kits are
closely held by their creators, while others are offered as part



of the cybercrime-as-a-service economy [21]. Certain crimi-
nals specialize in creating and selling phishing kits and will
even accept custom requests for kit creation [22]. Kit creators
compete based on the believability, ease of use, or perceived
security of their kits. Other criminal service providers sell or
barter to provide pre-hacked web servers (sometimes called
“shells” or “cpanels” in criminal marketplaces). Still others
offer lists of spam recipient e-mails and tools for sending the
e-mails [1]. This lowers the barrier to entry, allowing criminals
with very minimal technical skills or limited capabilities in
English to become successful phishers [23]. The phisher can
simply buy a kit, customize it by replacing the destination e-
mail address, upload, and unzip the kit on a pre-hacked web
server. The phisher then loads a pre-written message and a list
of target e-mails into his or her spamming tool, hits “send,”
and waits for stolen credentials to arrive in his or her inbox.

Basic components of a phishing kit include a template that
mimics the design of the website being impersonated, server-
side code to capture and send submitted data to the phisher,
and optionally code to filter out unwanted traffic or implement
other countermeasures against the anti-phishing community.
Such countermeasures might include URL shortening or redi-
rection, URL randomization, or code obfuscation [24].

D. Deploying a Phishing Scam
To carry out a traditional phishing scam, attackers first need

to have access to a live web server to host the phishing site.
In most cases, creating the site merely involves uploading a
phishing kit archive to the server and extracting its contents to
the desired path. Compromised infrastructure or free hosting
solutions are particularly common hosting targets (as we
discuss in Section V-C), because using an existing live URL
bypasses the requirement to purchase a new domain name
and saves phishers both time and money [25]. Otherwise, the
phisher must also register a domain name that will point to
the phishing content.

In the case of compromised infrastructure, the phisher gains
access to upload malicious files to a web server he or she does
not own by exploiting a known web vulnerability or by using
default or stolen credentials to access administrative software
running on the server [26]. Exploitation is often automated and
results in the uploading of a shell script on the server which
can then be used to remotely execute commands. Based on the
dataset in Section IV-A, we found that Wordpress installations
are a particularly common target for phishers. This can likely
be attributed to the prevalence of Wordpress, the vast library
of third-party extensions, and technically-unsavvy users who
fail to install security patches.

Once the phishing site is online, phishers distribute its
URL through means such as e-mail, social media, or direct
messaging [27]. Messages are crafted to deceive the user and
often convey a sense of urgency to encourage action [9].

The phishing campaign will remain online for some period
of time during which the phishing site collects credentials
from victims who fall for the scam and forwards them to the
phisher. Eventually, the site will be blacklisted, abandoned

by the phisher, or forcefully taken offline by the web host
[28]. Security efforts aim to minimize the amount of time that
passes between phishing site deployment and blacklisting or
take-down [17].

III. ANTI-PHISHING ECOSYSTEM

Phishers have extensive control over the configuration of
phishing sites they deploy. As we established in Section II-D,
this includes the location (URL and hosting provider) of the
site, the software the site uses to display the malicious content
and capture user input, and the deceptive messages distributed
to victims. Each of these areas involves an extensive network
of entities who are either exploited during the phishing attack,
who seek to fight phishing, or who are adversaries. This gives
rise to a complex anti-phishing ecosystem.

By combining our findings from Sections IV and V with
previous research of individual parts of the ecosystem [4], [1],
[29], [2], [23], we, for the first time, paint a picture of the
ecosystem as a whole, expose a host of potential weak points
throughout the ecosystem, and address these weaknesses.

A. Ecosystem Components

As shown in Figure 2, at the heart of the phishing attack
lie the phisher (1), phishing message (2), victim user (3),
and organization being impersonated (4). Without these basic
components, there would exist no basis of trust between the
victim user and organization and no means of exploitation by
the phisher [9].

Users are prone to re-using the same credentials across
different services [4]. This means that the damage from each
successful phishing attack can potentially cause a chain reac-
tion spanning multiple organizations. Thus, the organization
directly targeted by the phisher (4) expands to a set of
indirectly targeted organizations of interest to the phisher (5)
that use the same authentication scheme (such as username
and password). Given the risk of damage that arises as a result,
the organizations implement mitigation strategies consisting of
their own security teams, third-party anti-phishing vendors, or
law enforcement (6a).

1) Phishing Content: Phishing websites are displayed to
the user through a web browser, which necessitates browser-
based defenses such as those discussed in Section II-B. To
support these defenses, there exist organizations that maintain
blacklists of known phishing sites, organizations that verify
phishing reports, and native web browser functionality that
checks the blacklists [17] and blocks known sites as a baseline
protection against phishing attacks (6b). Consumer-oriented
security firms (6c) also offer software for end users who want
additional protection (e.g. antivirus and internet security tools).
While the former three classes of organizations all contribute
to the anti-phishing effort, they have different priorities and
scopes of operation, and are thus worth distinguishing.

Because native browser blacklists (discussed in Sec-
tion IV-C5) accept user phishing reports, a community of



Fig. 2. Components of the anti-phishing ecosystem.

savvy web users and researchers joins the fight against phish-
ing (6d). These groups gave rise to organized community-
driven efforts to list and confirm phishing sites, such as
PhishTank or the APWG [30].

Phishing content itself often stems from phishing kits, which
can be obtained through forums or dark web communities
that fuel cybercrime (7). Credentials stolen through successful
attacks are sold by phishers via illicit underground economies
[1] which in turn yield tools and motivation for future attacks.

2) Hosting Infrastructure: The hosting platforms (8a) on
which phishing sites get deployed fall into two main cate-
gories: those controlled directly by the phisher and abused
to carry out attacks, and those belonging to legitimate web
sites that get hijacked by the phisher [24]. In the case of
the former scenario, domain registrars (8b), both paid and
free, can be the subject of further abuse through malicious
domain registrations. In the case of the latter, the web site
owner (9) may suffer collateral damage, such as disruption of
regular business operations or loss of productivity as a result
of an incident response from the hosting provider or one of
the security vendors previously discussed (6a). The hosting
provider may also make efforts to reduce hijacking through
diligent patching or intrusion detection.

3) Message Distribution: Phishers require a communica-
tion channel to initiate their scam. Major e-mail providers
and social media networks inevitably capture a large volume
of phishing messages (2) through their platforms [31], thus
they are dragged into the ecosystem once they start dedicating
resources to protect their users. E-mail providers such as
Gmail check incoming messages, mark them as spam or alert
the user if malicious content is found, and forward abuse
reports of identified phishing URLs to concerned entities
(6a, 6b) [4], [32]. With the rapidly changing state of social
media and web browser landscape [33], we expect phishers to

develop innovative ways to bypass the protection available in
traditional communication channels such as e-mail.

B. Observations
We have presented the first high-level overview of the

different entities involved in today’s anti-phishing ecosystem
as well as the services exploited by phishers to carry out their
work. Because phishers are likely to gravitate toward whatever
tools best facilitate their attacks, beyond the entities already
listed, the ecosystem can evolve in response to new hosting
or distribution platforms for phishing content and continued
innovation in evasion techniques implemented in phishing
kits. In the following sections we show how the phishing
kits and URLs we studied were able to reveal such extensive
information about the ecosystem’s components.

IV. ANALYSIS OF SERVER-SIDE FILTERING

Many phishing kits employ request filtering, which requires
some set of conditions to pass (based on information contained
in the HTTP request or server state) before the phishing site
is displayed to the client. Filters are of particular interest
to researchers as they allow us to gain insight into the
organizations that a phishing kit is trying to evade, or the group
of users being targeted, thus making it possible to fingerprint
the kit. Filtering in phishing kits bears a similarity to web
cloaking [7], a technique used by spam sites to serve malicious
content to victims while showing seemingly benign content to
web crawlers.

Denying requests through server-side filtering seems para-
doxical at first glance, as the phisher’s goal is to scam as many
victims as possible. However, the phisher also wishes to evade
detection, which is where filtering plays an important role. It
is thus in the phisher’s interest to serve the phishing content
to a legitimate victim while denying access to search engines,
security firms, researchers, and blacklist crawlers, all of which



Fig. 3. Distribution of blocked IPs in the United States.

could trigger an anti-phishing response. Successfully blocking
these entities decreases the likelihood of timely detection and
blacklisting of the phishing site, ultimately increasing the
phisher’s return on investment.

Filtering can be implemented in various places, including
server directives, server-side scripts (written in languages such
as PHP and Python), or Javascript that runs in the user’s web
browser. The former two approaches are common and allow
for very similar types of filtering with certain trade-offs as
discussed below. The latter is an emerging technology seen in
more sophisticated phishing kits, suitable for evaluation in a
future work.

.htaccess files are used to supply configuration information
for the Apache web server, the most common server software
used for 44.99% of active web sites as of August, 2017 [33].
Such files are placed in directories containing web content
and scripts. They allow configuration to be specified without
root-level access to the server, which makes them possible to
deploy without a complete breach of a system (gaining access
to upload files to a public folder is generally sufficient). They
are also simple for phishers to write and maintain through
different iterations of a kit as they carry no dependencies. All
this ease makes .htaccess files particularly appealing and they
are therefore a common sight in phishing kits. .htaccess files
lend themselves well to analysis as they are comprised nearly
entirely of filtering directives in a homogeneous format, as
opposed to arbitrary server-side code which can be written in
many different ways, and can be obfuscated.

We examined a dataset of PHP scripts from phishing kits
as part of our research and found them to implement filtering
strategies in the same manner as .htaccess files. The main
benefit of using scripts over server-side directives is the ability
to track a user, something which has been previously studied
[23], [24]. We thus focus our analysis on .htaccess files.

In the following sections we study a large dataset of
.htaccess files in detail to reveal the nature and prevalence
of request filtering techniques employed by phishers while
identifying their underlying motivation. We propose methods
to defeat each type of identified filter. We also synthesize a
list of the anti-phishing organizations that phishers attempt to

Fig. 4. Distribution of blocked IPs worldwide.

evade based on the contents of the .htaccess files. Finally, we
consider metadata of the .htaccess files to plot age and discuss
phishing kit re-use.

A. Dataset Overview
We examine a sample of 2,313 .htaccess files extracted

from 1,794 live phishing kits hosted on 933 different domains.
These kits were retrieved between January 1st, 2016 and
June 30th, 2016 and provided to us by Cofense (formerly
PhishMe), a company that focuses exclusively on phishing-
related security solutions. In addition to the contents of the
.htaccess files, the dataset contained the file modification date,
date of retrieval, and URL of each kit.

1) Cleaning the Data: Because .htaccess files consist of
plain text and generally contain one directive per line, they are
straightforward to parse. We started by identifying duplicate
files in the dataset by stripping comments and empty lines (we
preserved inline comments as metadata for later analysis). This
left 153 unique .htaccess files out of the total of 2,313 (6.6%).
Of these unique files, 73 were seen only once, 66 appeared an
average of 7.5 times, and 14 outliers appeared an average of
124 times. The outliers were attributable to a handful of kits
with a large number of sub-directories all containing the same
.htaccess file.

We then identified syntactic variations of directives with the
same semantics (such as IP block rules) and iterated through
each .htaccess file to obtain an aggregate overview of its filters.

B. Filter Types and Frequency
We discovered five different major types of filters used in

the .htaccess files, distributed as shown in Table I. The most
common deny IP filter takes a blacklist approach to block
requests from specific IP addresses, partial IP addresses, or
CIDR ranges; at least one such rule was present in 64% of
the unique files and 95% of all files. Three other blacklist
filters checked the requester’s hostname, referring URL, or
user agent string to deny requests matching the specified
strings. On the opposite end of the spectrum, the allow IP
filter took a whitelist approach to grant access only to specific
IP addresses. In the case of our dataset, the allow IP filter was
only present in a handful of files that performed geolocation



TABLE I
OCCURRENCE OF DIFFERENT FILTER TYPES IN .HTACCESS FILES.

All Files (2313) Unique Files (153)Approach Filter Type Filter Count Files w/ Filter Filter Count Files w/ Filter
Blacklist Deny IP 1,046,397 2194 234,125 98
Blacklist Hostname 16,540 913 794 76
Blacklist Referrer 4,177 572 976 48
Blacklist User Agent 111,255 462 11,904 41
Whitelist Allow IP 315,907 9 94,515 5

to restrict traffic to single countries. The four blacklist filters
provide insight into the specific entities that phishers are trying
to exclude. The whitelist filters instead reveal the location of
the victims of the phishing scam.

In addition to these filters, we found that 30% of the unique
.htaccess files and 61% of all files limited HTTP methods
to GET and POST. For the sake of completeness, other less
interesting directives included the specification an index script,
disabling of server-level directory indexes, and allowing only
certain file extensions.

C. Organizations of Interest

In this section we discuss the nature of the blocked IP
addresses, hostnames, referring URLs, and user agents as we
unmask why phishers selected them as part of their filtering
strategy.

1 o r d e r a l low , deny
2 a l l o w from a l l
3 deny from 6 0 . 5 1 . 6 3 . # websense bandwid th w a s t e r
4 deny from 8 7 . 2 3 3 . 3 1 . 4 5 # b o t r i p s way t o o f a s t
5 deny from 4 6 . 1 3 4 . 2 0 2 . 8 6
6
7 deny from p a y p a l . com
8 deny from a p p l e . com
9

10 R e w r i t e E n g i n e on
11
12 Rewri teCond %{HTTP REFERER} go og l e \.com [NC,OR]
13 Rewri teCond %{HTTP REFERER} f i r e f o x \.com
14 R e w r i t e R u l e .⇤ � [ F ]
15
16 Rewri teCond %{HTTP USER AGENT} ˆ g o o g l e b o t
17 R e w r i t e R u l e ˆ .⇤ � [ F , L ]

Listing 1. Partial .htaccess file with all 4 blacklist filters
and real comments left by phishers.

1) IP Address: We identify the entity targeted by each IP
address through a variety of techniques: performing a reverse
DNS lookup to obtain the hostname, visiting the IP, querying
an ISP or IP geolocation database (we used IP2Location and
GeoLite2, respectively), and manually interpreting the com-
ments left behind by phishers. For some 4,300 IP addresses
out of the total of 29,971 unique blacklisted IPs we extracted,
phishers included a comment describing the entity believed to
be tied to the address. These comments could be found in 23%
of the files in the dataset. Examples of IP filtering as well as
comments are found in Listing 1.

For the purpose of our analysis, we combined all of these
techniques to obtain as much information as possible about
each IP address. For each IP address in the dataset, we
recorded the frequency as well as the associated entity. We
categorized these entities based on their primary business type.

Our analysis of the data revealed that the phishers devel-
oping these .htaccess files focus heavily on blocking requests
from web hosts, web crawlers, and internet service providers,
with a secondary focus on security companies, universities,
and organizations involved in DNS administration. Per the
GeoLite2 database, over 90% of the unique IP addresses in
our dataset were located in the US, with approximately half
originating in tech-heavy California as shown in the maps in
Figures 3 and 4. Areas with concentrated IP blocks coincide
with the headquarters and datacenters of major organizations
involved in internet security.

Avoiding traffic from these entities is important to phishers
because, for instance, detection by a web host might lead
to deactivation of the platform hosting the phishing site or
identification of the person behind the attack [28]. Detection
by a search engine crawler or security company would likely
result in blacklisting of the phishing content, which could
terminate the phishing campaign before the phisher finishes
his or her work [24]. Generally speaking, the phisher does not
want anyone but the victims to be able to access the phishing
page.

We can conclude that phishers make a considerable effort to
identify and attempt to bypass the anti-phishing infrastructure
being used against them. While this dataset does not allow us
to make any measurements of the effectiveness the phishers’
evasion efforts, the security industry can regardless respond
by using a diverse and ever-changing network of systems and
IP addresses.

2) Hostname: By total count, filtering by hostname (of the
IP address of the user making the HTTP request) was the
least common filter type in our dataset. This rarity is likely
because such filters require the server to perform a reverse
DNS lookup for every HTTP request which is costly in terms
of time and could impact the availability of the phishing site.
However, nearly half of the unique .htaccess files contained at
least one hostname filter, suggesting that phishers trust their
effectiveness.

Hostname filters showed a heavy bias toward the victim
organizations as well as anti-phishing organizations, and also
included some antivirus vendors. Some were designed to
match keywords that might be present in a security-related
hostname, such as “phish,” “spam,” or “.edu.”

This filter can be evaded by ensuring that no PTR reverse
DNS record is configured for the IP address accessing the kit,
or that the record is not revealing.



TABLE II
MOST COMMONLY OBSERVED ENTITIES IN OUR .HTACCESS DATASET.

Freq. Ecosystem Entity Type

257 Google Crawler
Blacklist

96 PayPal Victim Org.
91 Internet Identity Security
81 Bit Defender Security
49 McAfee Antivirus
42 Forcepoint Security
42 Mark Monitor Security
39 Brand Protect Security
37 Looking Glass Cyber Security
35 AVG Antivirus
34 Eset Antivirus
33 Kaspersky Antivirus

27 Firefox / Mozilla Browser
Blacklist

25 TrendMicro Antivirus
22 Apple Victim Org.
21 Symantec Antivirus
21 Netcraft Security
20 F-secure Antivirus
19 Dr Web Antivirus
15 Avast Antivirus
14 Avira Antivirus
14 ClamAV Antivirus
12 Spamcop Security
11 Yandex Crawler
11 Comodo Security
10 Microsoft Blacklist
10 PhishTank Security

3) Referrer: When a human makes a web request by
following a link in a browser, the browser will typically
transmit the URL of the referring web page in the Referer
HTTP header [34] of the new request. For instance, if an
employee at a security company were to manually verify a
phishing URL by clicking on a link in an e-mail or internal
database, the company’s name may be revealed in the referring
URL. Phishers can take advantage of this behavior by blocking
requests containing certain referring URLs, as shown in Lines
12–14 of Listing 1.

We found that the referrer filters focused exclusively on an-
tivirus companies, security companies, and blacklist providers.
These filters merely contained the primary public domain of
these companies (e.g. google.com or mcafee.com), suggesting
that phishers may have been guessing rather than basing these
filters on known referrers.

The anti-phishing industry can easily bypass such filtering
by configuring browsers or crawlers used for phishing detec-
tion to never transmit referrer information or to transmit a
benign-looking URL.

4) User Agent: The user agent string (defined in RFC
2616) identifies the software issuing the HTTP request on
behalf of the user, such as a browser or robot [34]. In our
dataset, user agent filters were used exclusively to block known
web crawling and scraping software.

Lines similar to 16–17 in Listing 1 were commonly found
in our dataset and seek to block the Google crawler. We
identified no other references to the anti-phishing entities that

we saw in prior filters. This absence suggests that although
phishers certainly wish to prevent automated tools (such as
wget or a software library) from fetching their sites, they
perhaps do not know the specific user agent strings used by
security infrastructure, or they know how trivially these can
be changed. Regardless, because the string can be spoofed,
phishing blacklist crawlers can and should frequently take
advantage of user agent spoofing.

5) Combined Summary: In Table II, we summarize the
most frequently observed entities in our dataset of 153 .htac-
cess files, specifically those with 10 more distinct appearances.
We aggregated the data by assigning a unique identifier to
each entity, then combined the total number of occurrences
of each entity within each filter type. Many of the entities
listed are of integral importance in the anti-phishing landscape.
Of particular note are Google Safe Browsing and Microsoft
SmartScreen, who operate the blacklists that natively protect
Google Chrome, Safari, Firefox, Internet Explorer, and Edge,
accounting for over 97% of global desktop traffic as of August,
2017 [35]. Similarly, it is no surprise that PayPal and Apple
appeared in this list as these companies ranked second and
third as the most targeted brands in our APWG dataset and
were common victims in prior studies of phishing kits by Cova
et al. [23] and Han et al. [24]. The large, user-driven anti-
phishing community PhishTank saw a disproportionately low
representation in .htaccess files, possibly due to the distributed
nature of the community [30].

It is evident that phishers work hard to thwart anti-phishing
efforts by evading detection to ultimately bypass the defenses
offered by blacklists, security firms, and antivirus vendors.
Furthermore, it is arguably eye-opening that such a clear
picture can be painted from data created by and known to
phishers. At the same time, the .htaccess data does show
some cracks: filters in older kits (discussed in the following
section) lag behind in the past, as many references are made to
defunct companies or companies that have merged with others
within the past two years. Measuring the true effectiveness of
phishers’ filtering techniques within the ecosystem would be
an interesting research problem.

D. Phishing Kit Sharing and Age

We found that on average 87 days elapsed between the first
and the last retrieval of the duplicate .htaccess files discussed
in Section IV-A1. Furthermore, almost every kit was retrieved
from a distinct domain. We can thus conclude that phishing
kits see regular re-use, potentially as part of a single phisher’s
campaign.

Frequent phishing kit re-use is further supported by ana-
lyzing the modification date metadata of the .htaccess files.
The majority of files were last modified over a year before
deployment, as shown in Figure 5. Interestingly, a handful
of kits dated as far back as 2009. Regular changes to the
configuration of anti-phishing infrastructure would quickly
render the filtering efforts in such kits obsolete.



Fig. 5. .htaccess file modification date histogram.

V. ANALYSIS OF PHISHING URLS

Cleverly-chosen URLs can be used by phishers to deceive
victims or make a page appear benign in the absence of other
context. In this section, we propose an up-to-date classification
scheme reflecting the latest trends in phishing URLs motivated
by evolving social engineering techniques of phishers in the
context of URL creation. Moreover, we show that analyzing
the domain age alongside the classification of these URLs
can reveal information about the infrastructure being used to
host phishing content. Patterns in phishing URLs have been
shown to allow for automated classification and detection of
phishing content, as studied in the work discussed in Section
VI, and such classification can be enhanced by considering
recent developments in URL crafting and understanding the
intent behind each type of phishing URL.

A. Dataset Overview
The APWG has operated a clearinghouse of cybercrime data

since 2004. The online eCrime eXchange database, available to
APWG members, contains over 2.7 million real-world phish-
ing attacks reported since 2015. Each entry contains the phish
URL, organization targeted, date detected, and a confidence
score. We focus on 172,620 URLs submitted during the first
two quarters of 2017, which we fetched from the database on
a daily basis and annotated with the domain registration date
based on WHOIS data [36]. We further narrow our focus to
“traditional” phishing URLs rather than social media URLs,
which are also recorded by the APWG but differ substantially
from a classic phishing attack in terms of deployment [31].

A key aspect of this dataset is that each URL is paired with
the victimized organization, because such URLs are primarily
submitted to the database by agents of the organizations
themselves. This pairing allows us to reliably identify the
presence of the brand within the URL’s hostname or path and
addresses the limitation of datasets in prior work [23], [24].

After removing partial URLs without a hostname, social
media URLs, and entries with a confidence score below 100%,
we parsed each URL to generate additional attributes including
hostname, top level domain, path, and subdomain level. We

then removed hostnames as duplicates if they differed only
in the presence of a hash or user ID in the subdomain, a
common technique employed by phishers to evade blacklist
hits [24]. This pruning left 66,752 unique hostnames. Finally,
we used substring extraction [37] to identify common tokens
in the URLs and manually classified them as brand if similar
to the targeted brand name or misleading if related to account
security and potentially misleading to a user (e.g. “secure,”
“https,” “service”). Having classified individual tokens, we
created parameters indicating their presence in the path and
hostname of each URL, and in turn could classify the entire
URL.

B. Classifying Phishing URLs

Using the attributes we added to the URL dataset, we
propose a phishing URL classification in Table III that builds
on the model of Garera et al. [8], an early and now outdated
classification that identified four different types of hostnames
in a phishing URL.

In an effort to comprehensively capture recent and emerging
patterns in phishing URLs, we identify URLs as one of five
mutually exclusive types by looking at both the hostname and
path. Types I through IV are divided into a further two sub-
types: the more common (a) for URLs recognizably containing
the brand name, or (b) URLs containing misleading keywords.
Both sub-types aim to trick a user to visit the URL. It was
common for the (a) sub-type to contain a slight misspelling
of the brand such as “paypol” instead of Paypal or “appel”
instead of Apple; this enables top-level domain registration and
typosquatting, and may thus also evade heuristic classifiers that
expect the exact brand name [32] or specific keywords [38].

Apart from the introduction of the two sub-types to each,
Type I, II, and III URLs are otherwise unchanged compared
to Garera et al.’s classification [8]. Type IV URLs contain a
deceptive top-level domain name registered by the phisher.
Type V URLs are unintelligible in the absence of other
metadata and contain a seemingly random hostname (which
can be either a domain or IP address) and no brand or
deceptive keywords.

Most browsers show the URL of the current page to the
user, but the way the URL is displayed differs across browsers.
Phishers may thus opt for a specific URL type depending on
the targeted browser or platform. For example, the Google
Chrome desktop browser highlights the top-level domain, so a
Type IV URL might appear legitimate to unsuspecting users.
A Type III URL would be suitable for a mobile browser which
only shows the first several characters of the URL due to
screen width limitations. For instance, a top level domain
of fakesite.com would not visible in the displayed portion
of a URL such as www.paypal.com.signin.fakesite.com when
viewed on a small screen. A Type I, II, or III URL would
be appropriate for display in e-mails, due to the possibility
of long deceptive strings spanning much of the URL. Finally,
a Type V URL can be advantageous for evading detection
tools expecting specific patterns. We have thus identified not



TABLE III
PROPOSED HIGH-LEVEL CLASSIFICATION OF PHISHING URLS, WITH EXAMPLES FROM DATASET.

Type I IP address as hostname, deceptive path contents
(a) http://66.196.233.2/www.paypal.com/webscr.html?cmd= login-run
(b) http://93.182.172.145/info/Verify.php?=&securessl=true
Type II Random domain, deceptive path contents
(a) http://resqplus.net/css/ssl/secure.paypal.com.au/au/cgi-bin/webscr/
(b) http://www.nae4ha2012.com/logos/login/secure.my.private-settings.support
Type III Long, deceptive subdomain
(a) http://statements.visa.com.upetkiti.be/cards/myvisa/transactionsphp
(b) http://https.secure.update.customer-update.extrasecure.profilecontinue.charityliberia.org/
Type IV Deceptive top-level domain
(a) http://change-paypal.com/ma/webapps/mpp/home/
(b) http://support-center-confirm.com/support/Payment-update-0.html
Type V Unintelligible URL
http://offto.net/5d8ucl/?action=redirect&nick=5d8ucl&m=1
http://69.93.204.33/⇠startrac/cash69.html

only technical reasons for URL selection, but also motivations
deeply rooted in social engineering.

In the entire dataset, we identified 156 Type I, 6,899 Type
II, 4,186 Type III, 14,289 Type IV, and 41,213 Type V URLs.
However, these numbers are far more meaningful when viewed
alongside the age of the domain name within the latter four
URL types, as discussed in the following section.

C. New vs. Compromised Infrastructure

Although URL content and domain age have historically
been used in phishing site classifiers based on machine learn-
ing, other heuristic attributes based on page content and search
engine metadata have proven to be much stronger indicators of
a phishing attack [38]. Therefore, rather than using URL type
and domain solely to identify phishing attacks, we propose
a different use for these attributes: predicting the underlying
hosting infrastructure, which can then be leveraged to mount
an appropriate incident response by anti-phishing entities.

We found that 28.9% of the URLs in our dataset were
reported within 1 month (30 days) of the domain registration,
while another 53.3% of URLs had domains older than a
year. The remainder was fairly uniformly split between 1
and 12 months. These findings are consistent with Hao et
al.’s analysis of spam URLs distributed via e-mail [29] and
show that the use of compromised infrastructure is still a
significant problem today. While it is tempting to outright
conclude that old domains belong to benign websites that have
been compromised, a much stronger case can be made if we
also consider URL classification along with the requirements
to deploy each URL type.

In Figure 6 we plot domain age versus URL type in
our dataset and find that Type IV (deceptive TLD) URLs
are the most common in newly-registered phishing domains,
with Type III (long subdomain) URLs also occurring more
frequently early on. Over time, the frequency of Type II
(deceptive path) and Type V (unintelligible) URLs increases
significantly while other types decline. Type I URLs are

Fig. 6. Impact of domain age on URL type distribution (Type II: random
domain with deceptive path; Type III: long deceptive subdomain; Type IV:
deceptive top-level domain; Type V: unintelligible URL).

omitted as IPs do not have registration dates, unlike domains;
they were also rare in the dataset as a whole.

Type I, II, and V URLs only rely on the folder structure
of uploaded files, which can easily be controlled via phishing
kits. Exploiting a web vulnerability to upload a phishing kit
would grant the access necessary to deploy such URLs. On
the other hand, a typical web hosting environment requires
DNS changes for configuring Type III and Type IV domains;
such access would require a larger-scale breach for deployment
on a compromised system. We therefore hypothesize that
older Type II and Type V phishing URLs generally represent
compromised infrastructure, while newer Type III and Type IV
URLs are more likely to be found on infrastructure deployed
by phishers. While we do not verify this correlation, a future
study involving a dataset with attributes such as the content
and search engine rankings of each URL could be used to
definitively classify the underlying infrastructure.

An intriguing case is our observation of a small proportion
of Type IV URLs with domains older than 1 year. Because



paid domain names must be renewed annually, it would not
make economic sense for a phisher to pay renewal fees prior
to using the domain name for the first time. After analyzing
the TLD distribution of these URLs, we found that nearly
all of these domains had free ccTLDs including .tk, .ga, .ml,
.cf, and .gq. Such domains are owned by the registrar rather
than the phisher and can often be renewed for free or re-
acquired for free following expiration; a secondary advantage
is of course anonymity since no payment details need to
be provided. A handful of outliers included compromised
legitimate websites that happen to contain a brand name, such
as apple-medical.com. Type IV URLs consisted of 41.8%
.com domains (lower than the 47.0% for the entire dataset)
and 14.6% of the aforementioned ccTLDs (higher than the
5.1% dataset average). It is also worth noting that these
ccTLDs are administered by only a handful of commonly-
abused registrars.

In this dataset, .coms dwarf the second most common single
TLD, .net, which accounted for only 3.6% of URLs. Full TLD
statistics are publicly available from the APWG [3].

VI. RELATED WORK

The work most closely related to our analysis includes that
of Thomas et al. [4], who carried out a comprehensive study
of the underground credential re-use ecosystem. As part of
their study, the authors briefly discuss web cloaking through
IP address blacklists in .htaccess files found in phishing kits,
but they do not delve into any specific details. Cova et al. [23]
performed an analysis of phishing kits freely available through
underground sources or left behind by phishers as archives on
live sites. The authors focused on identifying backdoors in
these free phishing kits and found trends in e-mail provider
usage, victimization, drop technique, and URL type. While
they considered URL obfuscation techniques implemented
through PHP code as a blacklist deterrent, they did not analyze
if the kits performed request filtering. Han et al. [24] collected
a large dataset of phishing kits through a honeypot server in
order to study the anatomy and timeline of phishing attacks in
great detail, which is important in understanding how to best
respond to a phishing attack.

Much prior research has studied URLs used for phishing
attacks. Hao et al. [29] analyze the domain registration behav-
ior of real phishers and reveal commonly abused registrars.
Garera et al. [8] provide a high-level classification scheme for
phishing URLs. Further studies developed effective machine
learning techniques to perform the classification itself [18],
[39], [38] in order to automatically identify malicious websites
on a large scale. Such systems are among those that respond to
phishing content reported to the security community [40]. With
the boom of social media in recent years, shortened redirection
URLs and social media links have also seen a prominent use
in phishing, as studied by Chhabra et al. [31].

To the best of our knowledge, no prior work has analyzed
.htaccess files in detail in the context of phishing. With respect
to phishing URLs, we expand on the classification of Garera et
al. [8] by introducing a new URL type frequently observed in

our dataset and combine methodology originally proposed by
Matsuoka et al. [36] to further identify the URLs deployed on
compromised infrastructure. Our datasets are unique because
they are based entirely on real-world, live phishing attacks,
contain extensive metadata, and not directly available to the
public.

VII. DISCUSSION

Server-side request filtering can easily be deployed through
.htaccess files placed inside distributable phishing kits, which
spread quickly due to their appeal to phishers with limited
programming knowledge. Fortunately, countermeasures exist
for each filtering technique as discussed in Section IV.

As web browsers and anti-phishing technologies mature,
phishers respond by adapting their URLs for maximum effec-
tiveness against their victims while aiming to avoid detection.
Automated phishing site classification systems should likewise
adapt to detect more subtle phishing URLs with partial brand
names, homographs, and deceptive keywords. The generic
URL classification scheme that we propose addresses common
modern-day social engineering techniques and can be used
as a part of such automated systems. Specifically, while
modern web browsers leverage native anti-phishing blacklists
to protect users from known malicious URLs, classification
based on the URL alone is not widely used. Our findings could
be used to reduce the false positive rates of such classification
by considering context such as the type of device being used.

Continuous monitoring of the most recent phishing URLs
can further improve this classification over time by identifying
changing trends. With the evolution of the use of social media
platforms and URL shortener services in phishing [31], future
analysis should also focus on how these new platforms are
used alongside the traditionally-hosted phishing site.

The URL-based attributes that we have identified could
be incorporated alongside existing detection techniques such
as passive DNS in order to respond during earlier stages
of a phishing campaign, or with greater confidence. Also,
considering the age of the domain along with the URLs
classification can help determine whether or not a legitimate
website has been compromised and allow for an effective
response by the hosting provider. Finally, we could leverage
URL-based predictions about the intended phishing victims
in an attempt to bypass some of the server-side filtering
techniques discussed in Section IV.

Phishers heavily rely on compromised infrastructure to
carry out their work, but they also obtain their own domains
through key bottlenecks including .com registrars and free
domain providers. Further efforts should be focused on quickly
detecting and responding to malicious registrations, especially
when no payment is required. With access to their own
domains, phishers otherwise have full flexibility when it comes
to crafting a deceptive URL.



A. Future Work
In a future study motivated by the findings from our analysis

of .htaccess evasion techniques, we will measure how effec-
tively key security organizations in the anti-phishing ecosys-
tem (from Table II) implement countermeasures to phishers’
attempts at evasion, with a focus on the real-world security of
the end user. If anti-phishing tools do not effectively counter
request filters, phishers can cause extensive damage to their
victims without being detected or stopped in a timely manner.
Our preliminary efforts in this area, which involve monitoring
of traffic to dummy phishing sites, have shown that even
simple request filtering is effective at delaying a response
from the security community. We plan to expand this study to
more complex and innovative combinations of filters targeting
typical groups of victims. Delayed blacklisting can lead to
costly damage as a result of the phishing attack, both to the
victims and brands being phished.

B. Limitations
Our findings should be considered with certain limitations

in mind. The APWG database, while large and maintained
by security professionals, is skewed toward organizations [3]
that directly or indirectly partner with the APWG. It contains
malicious URLs reported by the community, which are a
subset of all phishing attacks, and may be skewed toward
URLs that are harder to detect using existing heuristics. Also,
we trust the confidence levels assigned by APWG submitters
as an indication that the phishing URL listed was a true
positive, as in many cases phishing content has already been
removed by the time a URL appears in the database, so we
cannot re-verify it.

The Cofense dataset is a year older than the APWG dataset,
though Cofense does use a brand-agnostic approach to ver-
ifying and documenting phishing attacks which is divorced
from its customer list. While many or even most phishing
sites may contain .htaccess files, once deployed an .htaccess
file is not retrievable via a web request, and thus we have only
analyzed those files which were found in phishing kit archives
that could be retrieved from phishing sites (i.e. zip files that a
phisher extracted onto a compromised server). This means that
the .htaccess files ultimately deployed on phishing sites could
differ from those retrieved, though this is partially negated by
the sheer number of directives across our dataset.

Nevertheless, such datasets are highly relevant to the phish-
ing landscape as they correspond to the most common victim
organizations and therefore warrant future analysis by the
research community. Given our finding that phishers’ filtering
techniques target the most prominent entities involved in the
fight against phishing, future datasets built collaboratively
could prove to be even more eye-opening.

VIII. CONCLUSION

We have studied server-side request techniques employed
in phishing kits, which paint a picture of the anti-phishing
ecosystem from the perspective of criminals. We observed
that the ecosystem spreads far beyond just the victims and

organizations being targeted by phishers, yet those phishers
have a keen awareness of the tools being used against them
by the security community. Phishers seek to maximize their
return on investment by avoiding detection by tools they know
of, increasing the volume of attacks by using compromised in-
frastructure when possible, and bolstering the effectiveness of
attacks by registering highly-deceptive domain names (prefer-
ably at no cost) to trick their victims. Security researchers and
all involved entities must likewise understand phishers and
respond to thwart them before phishing methodology evolves
further.

It is clear that phishers have a wide gamut of paths available
to them when it comes to deploying an attack. Our study
provides the building blocks for an enhanced, custom-tailored
response to phishing attacks that can be aided by automated
technologies. Identifying a URL as a phish is only a basic
first step. By combining our URL classification scheme and
analyzing domain age, we can profile not only where a
phishing attack likely originated in terms of infrastructure,
but also why that URL was chosen. Building on our .htaccess
findings, a crawler that is able to bypass and profile server-
side filtering efforts can then reveal information about who
was targeted for a faster blacklist response time. Knowing
this information will allow anti-phishing efforts to focus on
the most effective response, potentially saving the ecosystem
time and money while improving the security of the end
user. In a future work, we will identify the effectiveness to
each filtering technique and measure the timeliness of the
ecosystem’s response.
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