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Abstract
Due to their ubiquity in modern web browsers, anti-

phishing blacklists are a key defense against large-scale
phishing attacks. However, sophistication in phishing
websites—such as evasion techniques that seek to defeat
these blacklists—continues to grow. Yet, the e�ectiveness of
blacklists against evasive websites is di�cult to measure, and
there have been no methodical e�orts to make and track such
measurements, at the ecosystem level, over time.

We propose a framework for continuously identifying un-
mitigated phishing websites in the wild, replicating key as-
pects of theircon�guration in a controlledsetting,andgenerat-
ing longitudinal experiments to measure the ecosystem’s pro-
tection. In six experiment deployments over nine months, we
systematically launchandreport2,862 new (innocuous) phish-
ing websites to evaluate the performance (speed and coverage)
and consistency of blacklists, with the goal of improving them.

We show that methodical long-term empirical measure-
ments are an e�ective strategy for proactively detecting weak-
nesses in the anti-phishing ecosystem. Through our exper-
iments, we identify and disclose several such weaknesses,
including a class of behavior-based JavaScript evasion that
blacklists were unable to detect. We �nd that enhanced protec-
tions on mobile devices and the expansion of evidence-based
reporting protocols are critical ecosystem improvements that
could better protect users against modern phishing attacks,
which routinely seek to evade detection infrastructure.

1 Introduction
Phishing attacks represent a signi�cant threat to millions
of Internet users [62]. Beyond stealing victims’ account
credentials, modern phishing websites have evolved to
collect extensive �nancial and personal information to fuel
identify theft, fraud, and other cybercrime [29, 57]. Simul-
taneously, phishing in�icts collateral damage by harming the
reputation of impersonated brands, compromising legitimate
infrastructure, and necessitating e�ort to mitigate abuse [45].

The anti-phishing ecosystem has long been involved in
a cat-and-mouse game with attackers (phishers). Despite the
ecosystem’s evolving defenses, the volume of phishing web-
sites has continued to grow over time andhas recently reached

record-high levels [2, 25]. Phishing remains popular among
criminals due to its scalability and low barrier to entry—even
for sophisticated and highly evasive attacks—thanks to the
support of illicit underground services [9, 28].

Robust yet scalable ecosystem-level defenses are thus
needed to protect users from the modern barrage of phishing.
Anti-phishing blacklists, which alert users whenever they
try to visit a known malicious website, and are enabled by
default in major desktop and mobile web browsers, are a key
defense [52]. Blacklists are supported by extensive backend in-
frastructure that seeks to detect and mitigate phishing attacks.

Despite the importance of blacklists, and even attention
from security researchers [44, 50, 52, 63], there have been no
systematic, long-term, real-world studies of the anti-phishing
blacklist ecosystem. Evasive phishing attacks that attempt to
circumvent blacklists are not only becoming more common,
but have recently been shown to be responsible for the
majority of real-world impact due to large-scale phishing [46].
Thus, the blacklisting of such attacks warrants close scrutiny.

In this paper, we propose PhishTime: a framework for
continuously identifying sophisticated phishing attacks in
the wild and continuously monitoring—in an empirical, con-
trolled manner—the response of the anti-phishing ecosystem
to blacklist evasion techniques, with the goal of automatically
identifying gaps within the ecosystem. PhishTime can thus be
used to ensure that the ecosystem—or speci�c entities within
it—deliver a consistent degree of protection to users. In the
�rst longitudinal study of its kind, we deploy the framework
over the course of one year to measure the performance of
three blacklists—Google Safe Browsing, Microsoft SmartScreen,
andOpera—across major desktop and mobile browsers (which
collectively have an overwhelming global market share [8]).

PhishTime operates in two stages: �rst, it collects phishing
URL reports in real time and monitors the blacklisting status
of live phishing websites (run by actual criminals). Criminal
phishing websites that evade prompt blacklisting are manu-
ally analyzed for insight into evasion techniques successful
against blacklists. Second, PhishTime leverages these insights
to generate experiments that deploy large batches of arti�-
cial (realistic, yet innocuous) phishing websites with evasion
techniques representative of those observed in the criminal
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websites. Then, PhishTime adapts and enhances a previously
proposed,automatedtestbed[44] tohostthearti�cialphishing
websites, report them to blacklists, and measure the blacklists’
response (while implementing numerous controls to min-
imize confounding factors). Unlike prior empirical studies,
PhishTime’s experimentalmethodology uniquely enables it to
evaluate and contextualize the response time of blacklists [44].

Our experiments involved the deployment, reporting (to
blacklists), and monitoring of 2,862 new, previously unseen,
arti�cial, evasive PayPal-branded phishing websites over
a period of nine months. This yielded several interesting
�ndings, which we promptly disclosed to the a�ected entities.

1. Blacklists exhibited an average response time of as little
as 55 minutes against unsophisticated phishing websites,
but phishing websites with evasion commonly used in
the wild—even trivial techniques such as redirection via
URL shorteners—delayed blacklisting up to an average
of 2 hours and 58 minutes1, and were up to 19% less
likely to be detected. We also found that blacklists
allow phishers to reuse domains for multiple attacks:
with evasion, phishing websites reusing domains were
still blacklisted up to 1 hour and 20 minutes slower
than unevasive ones. Moreover, certain sophisticated
JavaScript evasion could entirely avoid blacklisting.

2. PhishTime’s continuous measurements enabled us
to identify emerging issues over time. We detected
a decrease in blacklisting seemingly due to a failure
in PayPal’s crawler-based phishing detection system
(this �nding led directly to remediation of this issue
by PayPal). We also found a regression in the blocking
of malicious redirections by bit.ly (but, unfortunately,
received no response from that company). Lastly, mobile
Chrome, Safari, and Opera consistently exhibited a lesser
degree of blacklisting than their desktop counterparts.

3. New evidence-based phishing reporting protocols (i.e.,
that allow the submission of evidence such as a screen-
shot [11]) can expedite the blacklisting of evasive phish-
ing websites. We perform the �rst comparison of such a
protocol alongside traditional URL-only reporting [24].

To help identify other ecosystem gaps by continuously eval-
uating attack con�gurations beyond those considered in our
experiments, we are collaborating with the Anti-Phishing
Working Group (APWG) to integrate PhishTime as a perma-
nentecosystem service. Ourcontributions are thus as follows:

• A framework for the continuous long-term empirical
measurement of the anti-phishing ecosystem.

• Deployment of the framework for a longitudinal
evaluation of the performance of browser blacklists,
with a focus on evasive phishing.

• Identi�cation, disclosure, and remediation of several
ecosystem vulnerabilities exploitable by phishers.

1Even such a seemingly short delay can cause up to 20% more victims [46].

2 Background
Phishing is a type of social engineering attack [32] through
which attackers (known as phishers) seek to trick victims into
disclosing sensitive information [15]. This stolen information
allows phishers to compromise user accounts and identities,
whichisa signi�cantthreatbothto thevictimsandthesecurity
of online services [9, 19]. Within the current ecosystem, there
exist twomaincategoriesofphishing: spearphishing,whichen-
tails a concentratede�ort to trickspeci�chigh-value groups or
individuals [27], and large-scale phishing,which targets a wide
range of possible victims and allows phishers to pro�t through
volume [52]. We primarily focus on the latter in this work.

2.1 Phishing Attacks
In a typical phishing attack, phishers �rst con�gure and
deploy a deceptive phishing website to mimic the appearance
of a legitimate website (e.g., of a bank or e-mail provider)
that is likely to appear familiar to potential victims. Phishers
then start distributing messages to their victims (e.g., via
e-mail or SMS spam campaigns) to lure them to the phishing
website [10, 28]. Such messages will often contain a call to
action that suggests a degree of urgency (e.g., correcting a
billing error or securing an account) [61]. Victims who are
successfully lured will then visit the phishing website and
follow its prompts, which may ask for account credentials,
�nancial information, or biographical data. Finally, the data
harvested by the phishing website is ex�ltrated back to the
phishers and can then be used to commit fraud [57].

Phishing attacks have a low barrier to entry and are easy
to scale due to the existence of myriad illicit services in
underground communities. To deploy phishing websites,
many attackers purchase or obtain phishing kits, which are
all-in-one packages with all the necessary software to create
a phishing website [6, 13]. Additional services allow phishers
to orchestrate attacks with minimal e�ort [54, 55, 58].

Although phishing kits vary in quality, the recent growth
in phishing volume—which coincides with a decline in
malware and drive-by-downloads—has been accompanied by
a general increase in sophistication [2, 18, 62]. For example,
advanced kits venture beyond stealing account credentials
and may ask their victims to provide detailed �nancial and
personal information [46]. Additionally, such kits incorporate
features to evade detection by automated anti-phishing
systems [44] and may even attempt to intercept two-factor
authentication in real time [60]. The threat that phishing
poses to victims, organizations, and Internet infrastructure
has given rise to an anti-phishing ecosystem that has matured
over time—in response to the evolution of phishing—to
provide multiple layers of defense [45].

2.2 Anti-phishing Blacklists
Browser blacklists are a key anti-phishing defense that
protects users transparently and is enabled by default in
most major web browsers across both desktop and mobile
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devices [44]. Thus, blacklists are capable of protecting users
on the same scale at which phishing occurs.

When a user attempts to visit a phishing website whose
URL is known to the browser’s blacklist, the browser will
display a prominent warning in place of the phishing con-
tent [52]. Moreover, blacklists can be integrated with e-mail
spam �lters to outright prevent users from being exposed to
e-mails with the same malicious URL. Blacklists are supported
by extensive backend infrastructure that collects suspected
phishing URLs and veri�es malicious content prior to adding
them to the blacklist (to avoid false positives). Some blacklists
are also supplemented by in-browser heuristic classi�ers [35].
Evasion Techniques. A notable weakness of blacklists
is that they are inherently reactive. Phishers capitalize on
the time gap between a phishing website’s deployment
and its subsequent blacklisting, and may increase their
return-on-investment (ROI) by prolonging this gap [26, 41].
Because blacklist detection relies on content veri�cation,
blacklists are vulnerable to evasion techniques which, when
successful, may delay or entirely prevent blacklisting [44].
In Section 6, we describe our approach to testing evasion
techniques commonly used in the wild.
Cloaking is an evasion technique that seeks to hide phish-

ing content from blacklist infrastructure (i.e., web crawlers)
while keeping it visible to human victims [30]. When a
phishing website with cloaking suspects that a request is from
a crawler, it will replace the phishing content with a benign-
looking page or an error message. Cloaking has become
standard in phishing kits, and it is commonly implemented on
both the server side and client side by applying �lters based
on HTTP request attributes and device characteristics [45].
Redirection links make it more di�cult for anti-phishing

systems (e.g., e-mail spam �lters or blacklists) to correlate
a link in a lure with a known phishing URL [10]. Because
blacklists block phishing websites based on their URLs,
phishers typically distribute lures with di�erent URLs that
then redirect [20] to the �nal phishing URL. The HTTP
redirection chain itself may implement cloaking to further
evade detection, and a many-to-one mapping may exist
between redirection links and phishing websites to dilute
each link’s perceived maliciousness [65]. Phishers commonly
abuse URL shortening services to create redirection links [10].
Compromised infrastructure is regularly used by phishers

to host phishing kits [1, 31]. Such infrastructure—which
otherwise contains legitimate websites—poses a particular
challenge to blacklists, as the blacklists must ensure that the
legitimate content is not blocked alongside the phishing con-
tent (e.g., it might only di�er in the path of a URL on the same
domain [3]). Some phishing kits exploit this phenomenon by
generating many sub-folders under one domain, all of which
must then be individually blacklisted [46].
Reporting Protocols. Just as individual users rely on
browser blacklists to stay safe from phishing, the organiza-
tions impersonated by phishing websites rely on blacklists to

protect their customers. These organizations typically obtain
phishing reports from their customers or internal systems,
and then forward the identi�ed URLs to blacklists, either
directly or through the help of third-party vendors [48].

Blacklists predominantly accept reports of phishing web-
sites in the form of a bare URL [22, 23, 42, 53]. However, such
reports can prove ine�ective if the website successfully uses
evasion, as the blacklist may mistake the website as benign
and thus fail to act appropriately on the report. Reporting
protocols that facilitate the submission of additional evidence
(e.g., screenshots or page source) are currently available on
a limited scale [11]; we test one such protocol in Section 8.6.

3 Blacklist EvaluationMetrics
In this section, we explain the metrics that we use to evaluate
blacklists and describe the speci�c blacklists that we consider
throughout the rest of this paper.

3.1 Blacklist Performance
Discovery refers to a blacklist’s ability to identify new URLs
in the wild that are suspected of hosting phishing content.
A blacklist with ideal discovery would know of every URL
within the population of live phishing URLs. Discovery
can result from direct phishing reports or other ecosystem
sources, such as monitoring of e-mail spam, web tra�c,
website content, or server con�guration [5, 17, 35, 43, 46].

Detection refers to a blacklist’s ability to correctly classify
the discovered URLs, such that URLs with phishing content are
added to the blacklist. A blacklist with ideal detection would
not only �ag every true-positive phishing URL,but it would do
so promptly at the time of discovery to minimize the potential
damage caused by each attack. Thus, we can split detection
into two sub-metrics: For any set of phishing URLs discovered
by a blacklist, coverage is the proportion of these URLs that
are blacklisted at any point while they host phishing content.
Speed is the time delay between discovery and blacklisting,
which assesses how quickly blacklists respond. It is thus de-
sirable for blacklists to deliver high coverage and high speed2.

3.2 Selection of Blacklists
Several di�erent service providers maintain anti-phishing
blacklists that are natively included in modern web browsers.
Google Safe Browsing (GSB) protects Chrome, Safari, Firefox,
and Chromium [25]; by global browser market share as of
December 2019, GSB is the most impactful blacklist as it
protects approximately 80.30% of desktop users and 92.22%
of mobile users [8]. Microsoft SmartScreen protects Internet
Explorer (IE) and Edge [38] and accounts for approximately
12.96% of desktop users. Opera’s fraud andmalware protection
leverages undisclosed third-party providers [47,50] to protect
the Opera browser, which has a market share of approxi-
mately 1.50% on desktops and 1.27% on mobile. We focus

2Perfect detection is nontrivial in part because blacklists must maintain
a very low false-positive rate to avoid disrupting legitimate websites [64].
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Figure 1: High-level overview of the PhishTime framework.

our evaluation on these top three global blacklists and pay
particular attention to GSB due to its large potential impact.

There exist other browser blacklists with a lower global
market share but with prominence in speci�c countries,
such as Tencent Security and Yandex Safe Browsing [8, 56, 67].
In our experiments, we do not consider these blacklists or
other anti-phishing systems that are not enabled by default
in browsers, such as third-party browser plugins or antivirus
software [52]. However, our methodology and framework
could be applied to evaluate these alternatives.

4 PhishTime Overview
An e�ective way to empirically evaluate the performance
of anti-phishing blacklists is to deploy a large batch of
specially-con�gured test phishing websites, report the
websites directly to blacklists, and then monitor each website
to see if and when it is blacklisted [44,48]. For our longitudinal
evaluation of blacklist performance, we make a series of such
deployments, at regular intervals, over an extended period
of time. Within each deployment, we con�gure multiple
distinct batches of websites to support di�erent experiments.

The goal of our experiments is to provide insight into
potential gaps within the ecosystem, which could, in turn,
lead to actionable security recommendations. We therefore
seek to closely replicate the phishing website con�gurations
(i.e., evasion techniques) used by attackers. To identify
such con�gurations and guide our experimental design, we
developed the PhishTime framework.

We obtained permission from PayPal, Inc. to use PayPal-
branded phishing websites throughout our experiments3.
Therefore, in ourPhishTime ecosystem analysis,we also focus
on PayPal phishing websites in the wild. Although we were
unable to collaborate with other companies for this research,
our methodology is generic and could be used for any brand(s).

The PhishTime framework is our systematic, semi-
automated approach for identifying evasive (i.e., unmitigated)
phishing websites in the wild. We use the framework to char-
acterize both typical and emerging evasion techniques used
by real phishing websites. Understanding the ecosystem’s
response to typical phishing enables identi�cation of gaps
currently being exploited by attackers, whereas analysis
of less prominent emerging evasion techniques allows us

3In the current ecosystem, PayPal is among the brands most commonly
targeted by phishers [59].

to take a proactive approach to mitigate the expansion of
sophisticated developments in phishing.

The system work�ow is described in Figure 1, and proceeds
as follows. PhishTime begins by collecting a number of
real, live phishing websites (i.e., operated by criminals) for
analysis, with Section 5 covering the following steps:

Monitor Blacklisting of Live PhishingWebsites. First,
we build a sample of live phishing URLs ( 1 ) and con-
tinuously monitor their status on blacklists of interest.
In our deployment, in real time, we collected PayPal
phishing URLs from the APWG eCrime Exchange [2]
and URLs from phishing e-mails reported directly to
PayPal. Using multiple data sources helps increase the
diversity of the sample: we found many URLs unique
to each respective source, likely due to di�erences in
their data collection and detection approaches.

Report URLs and Prune if Blacklisted. If any URL is not
initially blacklisted, we report it ( 2 ) directly to the black-
lists,andto otherkeyanti-phishing entities, in an e�ort to
get it blacklisted (using the approach and infrastructure
described in Section 7.2). We subsequently prune URLs
blacklisted within a reasonably short period thereafter
and retain those that are not. Recent work has shown
that once detected by a blacklist’s backend, the majority
of phishing URLs show blacklist warnings within two
hours [46]. We, therefore, chose a blacklisting cuto�
of two hours to eliminate URLs that blacklists could
successfully detect, but likely originally failed to discover.

Analyze (Evasive) PhishingWebsites. We then manu-
ally inspect the remaining URLs ( 3 ) to understand why
they have been evading blacklist detection. We analyze
the evasion techniques used as well as the behavior (i.e.,
general appearance and user interface) of the website.
We performed this step by �rst visiting each URL, and
then testing di�erent variations of request parameters
until we successfully retrieved the content. We can thus
infer the server-side evasion techniques used by each
phishing website. We also analyze each website visually,
and inspect client-side source code, to not only uncover
any additional evasion logic, but to compare the websites
to samples of known phishing kits available to us to
determine which are the most common. Simultaneously,
we identify and exclude false positive or o�ine websites.

The rest of PhishTime’s operation leverages the insights
extracted from criminals’ phishing websites and, through
the automated deployment of our own arti�cial phishing
websites that mimic them, achieves continual monitoring
of blacklist performance.

Design (Evasion-inspired) Experiments. After analyz-
ing a representative sample of URLs, we abstract the
key trends that we observed and design experiments
to replicate them in a controlled setting ( 4 , Section 6).
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Deploy PhishTime Experiments. Finally, we deploy
these experiments ( 5 , Section 7) to evaluate blacklist
performance, over time, in the face of diverse evasion.

EcosystemRecommendations. We use our experimental
results to make security recommendations for speci�c
blacklists or the ecosystem ( 6 , Sections 8-9). Any result-
ing ecosystem changes can then in�uence the design
of experiments in successive framework deployments.

5 PhishTime Analysis
We used the PhishTime framework in January 2019 to
identify phishing websites in the wild capable of successfully
evading blacklisting for extended periods of time. We then
characterized typical evasion techniques used by these
websites, and we designed experiments which entailed
deploying a series of PhishTime-crafted phishing websites
to empirically measure the response of blacklists to these
techniques, in a controlled manner. Later, in August 2019,
we used the framework to identify less common (but more
sophisticated) emerging evasion techniques, and we designed
additional experiments to test these techniques. We show
a timeline of our ecosystem analysis using PhishTime, and
the subsequent experiment deployments, in Figure 2.

5.1 Typical Evasion Techniques
In total, we analyzed 4,393 distinct phishing URLs in the wild
and found that 183 failed to be promptly blacklisted. Although
this may seem like a relatively small number, prior work has
shown that the majority of real-world damage from phishing
occurs from a small fraction of known phishing URLs [46].
Moreover, the total URL count for the ecosystem would be
considerably higher, as we focused only on a single brand.

Of these 183 websites, 96 were never blacklisted anywhere
before going o�ine (the average observed lifespan was 17
hours, 12 minutes), 87 were ultimately blacklisted in at least
one desktop browser (with an average observed speed of
7 hours, 4 minutes) and 23 were ultimately blacklisted in at
least one mobile browser (with an average observed speed
of 12 hours, 2 minutes). We also observed 10 websites which
remained live, without blacklisting, for over one week. Note
that due to the inherent delay between an attacker’s deploy-
ment of a phishing URL and its appearance in a report or feed,
the aforementioned timings represent lower bounds [34].

By analyzing URLs in the e-mail lures reported to PayPal,
we found that 177 of these websites had lure URLs which
redirected to a di�erent �nal landing URL with the phishing
content. We observed redirection URLs both through third-
party redirection services and attacker-controlled domains.
In the latter case, we commonly observed JavaScript-based
redirection alongside traditional HTTP redirection [20]. We
also observed that at least 146 of these websites used some
form of server-side cloaking [45]: we were unable to retrieve
their content using a cloud-based web crawler but succeeded
when using a mobile IP address or anonymous VPN service.

Figure 2: Timeline of framework & experiment deployments.

At least42 websites hada di�erentURL pathora subdomain
of a domain that appeared in another phishing website, which
re�ects phishers’ tendency to re-use infrastructure.

5.2 Emerging Evasion Techniques
We found that eight of the 96 phishing websites which
were never blacklisted implemented clever mechanisms to
evade detection: �ve presented visitors with a CAPTCHA
challenge prior to displaying the phishing content, two
required the user to click on a button in a popup window
prior to redirecting to the phishing page, and one would not
render content prior to detecting mouse movement. We refer
to these evasion techniques as behavior-based because they
require a speci�c user behavior to display phishing content.

6 Experimental Design
We now transition from merely observing the ecosystem
to actively measuring it: to methodically test the phishing
website con�gurations we observed, we replicate them across
a large sample of our own new arti�cial phishing websites. We
deploy these websites, report the respective URLs to several
anti-phishing entities, and monitor the speed and coverage
of blacklists as they respond to our reports. We conducted
our experiments ethically, to avoid harming any real users
or anti-phishing systems, as discussed in Section 9.2.

In total, we made one preliminary deployment in March
2019 and six main deployments of experiments at regular
intervals between May 2019 and January 2020. The purpose of
the preliminary deployment—which mirrored the con�gura-
tion of the �rstmain deployment—was to verify the soundness
of our experimental design and the technical correctness of
our framework. We summarize our deployments in Table 1.

Across the six main deployments, we launched 2,862
phishing websites as part of seven di�erent experiments.
We registered a total of 2,646 new .com domain names for
these websites. Because some of our experiments involved
redirection links, an additional 1,296 such links bring our
overall URL count to 4,158. As our experiments seek to make
several distinct measurements over time, each deployment
includes multiple di�erent experiments.

Each experiment consists of one or more distinct batches of
phishing websites: groups that share a single con�guration
corresponding to the respective experiment. We chose our
batch size, 54, by estimating the required number of domains
(i.e., which we would then purchase) for a sample size that
could support statistically signi�cant inferences in one-way
ANOVA among sets of batches: To obtain a power of 0.95 at
a p-value of 0.05, we initially assumed a medium e�ect size
of 0.25 [12]. Using the baseline GSB blacklist speed observed
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Deployment Per Deployment Total
Experiment 1

May
2
Jul.

3
Sep.

4
Oct.

5
Nov.

6
Dec. Batches Websites URLs Batches Websites

Domains
Registered

A Baseline 1 54 54 6 324 324
B Basic Evasion 1 54 54 6 324 324
C Typical Evasion (Redirection) 3 162 324* 12 648 1,080
D Domain Reuse 3 162 324* 12 648 0
E Discovery 2 108 108 8 432 432
F Emerging Evasion 7 378 378 7 378 378
G Evidence-based Reporting 2 108 108 2 108 108

Table 1: Experiments conducted during each of our main deployments (*half are redirection links).

in the preliminary deployment, we calculated a higher e�ect
size of 0.36, which suggests an adequate sample size selection.

6.1 Measuring Blacklist Speed &Coverage
The experiments in this section focus primarily on measuring
the detection performance (i.e., speed and coverage) of black-
lists. As we believe that it is generally infeasible for attackers
to avoid discovery when conducting traditional phishing
attacks (e.g., at scale through e-mail spam), our reporting
methodology seeks to ensure that all URLs we deploy as
part of these experiments are promptly discovered by the
blacklists we test. We do so by simultaneously reporting the
URLs to multiple blacklists and other anti-phishing entities,
which we elaborate on in Section 7.2.

ExperimentA:Baseline.Foroursimplestexperiment,we
launch a single batch of basic phishing websites, with no eva-
sion technique, once in each deployment. These, and all other
websites we deploy, used HTTPS to match current ecosystem
trends [2]. This experiment serves two key purposes: to
establish a baseline for the best-case speed and coverage
provided by blacklists (for comparison to other experiments),
and to measure if these metrics remain consistent over time.

Experiment B: Basic Evasion. In this experiment, we
test two straightforward cloaking techniques inspired by our
observations in Section 5.1: websites that only allow tra�c
from browsers with a mobile user agent [20, 30], and websites
that render content using JavaScript. We alternate these two
cloaking techniques between deployments.

This experiment allows us to evaluate blacklists’ response
to slightly more sophisticated phishing by comparing against
the baseline response in Experiment A. It also establishes a
point of comparison for even more sophisticated phishing in
later experiments. A secondary objective of this experiment
is to assess blacklist coverage (on mobile devices) of phishing
websites aimed speci�cally at mobile users. Mobile devices
have historically been prone to phishing [63], and recent
work has revealed gaps in blacklisting on mobile devices [44].

Experiment C: Typical Evasion (Redirection). Each
deployment in this experiment has three batches of websites
that focus on evaluating the evasiveness of redirection. In
a one-to-one mapping, we pair each phishing website with
a di�erent URL that redirects to it with an HTTP 302 status
code [20]. For this experiment, we only report the redirection
URLs (i.e., the URLs that could serve as lures in a phishing e-

mail). We con�gured each phishing website with the same eva-
sion technique as Experiment B in the respective deployment.

In the �rst of the three batches, we used a popular link
shortening service, bit.ly, to generate the redirection links.
Such services are commonly used by attackers to scalably
generate unique lures. In the second of the three batches,
we used our own .com domains (each di�erent from the
website’s domain) for the redirection links. In the third batch,
we similarly used .com domains for the redirection links,
but additionally con�gured them with server-side IP and
hostname cloaking [45]. The latter batch thus most closely
mirrors the typical con�guration of the phishing websites
that we observed in Section 5.1; we based the cloaking
technique on the .htaccess �le (which blocks known crawlers)
found in a phishing kit that we commonly observed in the
wild during the PhishTime analysis ( 3 ).

Because we only change one variable between the three
batches, we can compare the blacklisting of phishing websites
that combine redirection with cloaking on both the lure
and the phishing website with the blacklisting of websites
with lesser degrees of evasion. We can also evaluate the
feasibility for attackers to use, and the ecosystem’s mitigation
of, third-party redirection services.

Experiment D: Domain Reuse. After the completion
of each Experiment C deployment, we generate identical
batches of websites on the same domains as in Experiment
C, but with di�erent URL paths [3]. We then redeploy these
websites as part of a new experiment, which seeks to measure
how blacklist speed and coverage change when phishers
re-use domains and infrastructure to carry out successive
attacks (a strategy phishers use to increase their ROI).

Experiment F: Emerging Evasion. These websites
mirror the sophisticated, emerging evasion techniques we
observed in Section 5.2. Three batches implement evasion
using JavaScript code that we found in the wild for CAPTCHA,
popup, and mouse movement cloaking, respectively. Three
additional batches have the same con�guration but with
added .htaccess server-side cloaking, as in Experiment C. One
�nal batch had only .htaccess cloaking, as a control group.

6.2 OtherMeasurements
Our remaining experiments follow a di�erent reporting
methodology than those in the previous section.

Experiment E: Discovery. In this experiment, we launch
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two batches of websites, per deployment, that mirror the
(basic) con�guration of Experiments A and B. However, we
only report each batch to a single anti-phishing entity (PayPal
or the APWG), alternating between deployments. Thus, by
comparing against Experiments A and B, we can evaluate how
well our primary reporting methodology ensures prompt dis-
covery by blacklists. We can also directly test the performance
of speci�c anti-phishing entities: we chose PayPal’s own
anti-phishing system because our websites used the PayPal
brand, and we chose the APWG because it had been shown
to reliably share phishing URLs with other entities [2, 44].

Experiment G: Evidence-based Reporting. When we
initially designed our experiments, Google Safe Browsing
only allowed the submission of bare URLs when reporting
phishing (whether manually or programmatically). However,
in July 2019, with the release of the Chrome Suspicious
Site Reporter (CSSR) [11] plugin, manual reports could be
enhanced with additional evidence: a screenshot, source
code, and the redirection chain, IP address, and user agent for
the request. To evaluate if this enhanced reporting approach
could help improve blacklists’ detection of evasive URLs, we
designed this additional experiment to compare the coverage
of GSB when reporting with the old and the new method.

We con�gured the two batches of phishing websites
in this experiment with cloaking that limits tra�c to US
IP geolocations: a strategy that was recently capable of
evading GSB [44]. We reported one batch via CSSR [11]
and the other batch via the traditional GSB URL submission
form [22]. Because CSSR only supports manual submissions,
we compared it to another manual submission channel.

7 Implementation of Experiments
We adapted a previously-proposed testbed (PhishFarm [44])
to deploy the phishing websites needed for each of our ex-
periments. The testbed enables the automated con�guration,
deployment, and monitoring of innocuous but real-looking
phishing websites to empirically measure browser-based
defenses such as blacklisting. To accurately emulate current
phishing trends and ecosystem defenses, we enhanced the
testbed to support automation of HTTPS website hosting,
lures with redirection, and API-based reporting.

7.1 Overview
In Figure 3, we provide an overview of the steps we took to
deploy each experiment. First, we prepare the hosting infras-
tructure ( A ). We used the aforementioned testbed to host
our phishing websites on 45 cloud-based Apache web servers,
each with a unique US IP. At the time of each deployment, we
con�gure DNS records to point the required domains to these
web servers, and we install Let’s Encrypt SSL certi�cates [33]
for each domain. Next, we con�gure the phishing website
content and behavior (i.e., evasion techniques) for each URL,
and we test this con�guration to verify the correct operation
of the framework ( B ). We then activate the websites and

Figure 3: Steps in each deployment of experiments.

(a) Successful request (b) Request denied by cloaking

Figure 4: Appearance of our phishing websites.

immediately report their URLs to the anti-phishing entities
speci�ed by the experimental design ( C ). Over the course
of the next seven days, we monitor the blacklist status of our
URLs and we collect web tra�c metadata ( D ). Finally, we
deactivate the websites and analyze the collected data ( E ).
Each of these steps is fully automated by the testbed.

Allofourphishing websites matched the lookand feelof the
PayPal.com login page as it appeared in January 2019. When-
ever a crawler request was denied by the cloaking technique
on a particular website, it would encounter a generic 404 error
message [20], as shown in Figure 4.

7.2 Reporting to Blacklists
To maintain consistency across our large number of ex-
periment deployments, we fully automated our reporting
methodology. Our reporting approach is representative of
the actions that an organization targeted by phishers might
take to mitigate known phishing websites [44].

To report each of our phishing websites, we submit its URL
directly to Google Safe Browsing via the Phishing Protection
Submission API [24]4 and to the APWG via the eCrime
Exchange API [2]. Direct API reporting is not available for
Opera and Microsoft SmartScreen. However, prior work
has shown that the APWG and other major anti-phishing
entities share data with these blacklists [44, 50]. Therefore,
we report to these additional entities via e-mail. Using a
PayPal-branded phishing e-mail template found in the wild,
we generate a fake phishing e-mail with the URL of the
website. We then forward this e-mail as an attachment to
anti-phishing entities that accept reports from the public:
PhishTank [49], Netcraft [42], PayPal [51], and US CERT [21].
This reporting methodology seeks to guarantee all blacklists’
discovery of our phishing websites (thus, it does not apply to
Experiments E and G, as previously discussed in Section 6.2).

4At the time of our deployments, the Phishing Protection Submission
API was in a beta stage and not available to the public. Google provided us
with access to the API for this research.
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7.3 Blacklist Monitoring
We used a total of 40 virtual machines (VMs) to empirically
monitor blacklisting of each website at least once every 10
minutes across six desktop browsers: Chrome, Safari, Firefox,
IE, Edge, and Opera. In addition, to determine the speed of
blacklisting on mobile, we monitored Google Safe Browsing
programmatically using the Update API [23]. Using a single
physical Android phone (connected to the Internet over
Wi-Fi), we also empirically compared the coverage of mobile
Chrome, Firefox, and Opera to their desktop counterparts.

7.4 Experimental Controls
To ensure the validity of our experimental data, we metic-
ulously controlled the con�guration and deployment of our
experiments to minimize the e�ect of confounding factors
on the observed speed of blacklisting: any factors other than
the evasion technique of each website (Experiments A-F) or
the reporting channel (Experiment G).

WebsiteMetadata. Beyond classifying phishing websites
based on their content, anti-phishing systems (including
blacklists) consider metadata such as deceptive URL key-
words, domain age, and URL and IP reputation [64]. Each
of our domains and URL paths consisted of combinations
of random English words to limit detection via URL or DNS
attributes [5, 68]. To ensure that no historical maliciousness
was associated with our phishing URLs, we registered a new
domain name for each URL reported (except Experiment D,
which deliberately measured domain re-use). We also
registered our domains six months before each experiment,
leveraged a major registrar (GoDaddy), and used the .com
TLD (found in the majority of current phishing URLs) to
minimize detectability through these attributes [2].

Network Tra�c. To prevent network signals from our
monitoring infrastructure from potentially skewing blacklist-
ing, our websites showed benign content to requests from this
infrastructure. We also disabled client-side anti-phishing fea-
tures in the browsers used for monitoring. Similarly, queries
to the Update API did not leak the URLs being checked.

Consistent Reporting. Some anti-phishing systems
�lter reports to mitigate the risk of being �ooded by �ctitious
URLs from attackers. Our direct reports through Google’s
non-public API inherently avoid such �ltering. Also, each
of our e-mail reports originated from a di�erent e-mail
address, and information such as the (�ctitious) victim name
or transaction amount was randomized between reports. We
initiated each deployment at approximately the same time
of day. We then sent the reports for any given experiment
in a single pass to minimize variations in reporting time, and
we throttled the reports to avoid an excessive reporting rate.

Experimental Variables. Within each experiment, we
varied the con�guration of di�erent batches in at most one
way to be able to perform a comparative analysis on a single
variable. The same concept also applies between the majority
of our experiments, which can thus collectively paint a multi-

dimensional view of the response of anti-phishing blacklists.
ExperimentDuration.Anti-phishing blacklists typically

respond within a matter of hours; however, in certain cases
(e.g., due to cloaking), blacklisting may be delayed by several
days as additional (possibly manual) checks are made by
various entities [44]. This observation, combined with occa-
sional long-lasting phishing websites during the PhishTime
analysis, motivated our conservative choice of a one-week
lifespan for each phishing website in our experiments.

We discuss possible trade-o�s in our controls in Section 9.3.
Nevertheless, in the following section, we show that our
experiments generally led to a consistent response by the
ecosystem and ultimately yielded actionable �ndings.

8 Experimental Results
After the completion of all our experiment deployments, we
had collected extensive data for each of the 4,158 URLs that
we launched and monitored: timestamps of blacklisting (in
six desktop browsers, three mobile browsers, and the Google
Safe Browsing API), online status, certi�cate revocation
status, and web tra�c logs. Our infrastructure operated as
expected during each main deployment.

In the analysis that follows, for any given batch of URLs,
we de�ne the coverage of a given blacklist as the percentage
of all URLs that were blacklisted at any point during the
seven-day deployment of the batch. For any given URL,
we de�ne blacklist speed as the elapsed time between our
reporting of that URL and its subsequent blacklisting. Within
an individual batch, we either provide median speed in
tabular form or plot speed as a function of coverage over time.
Simpli�cation of Dimensionality. Our empirical mon-

itoring of desktop browsers revealed that Chrome and Safari
consistently delivered the same blacklist speed and coverage,
whereas Firefox was an average of 10 minutes slower (likely
stemming from di�erent caching of the GSB Update API [24])
but still had the same coverage. Similarly, in comparing IE and
Edge across all deployments, we found that the former was
12 minutes slower on average, also with the same coverage.
Thus, to simplify and clarify our analysis, we exclude the
desktop versions of Safari, Firefox, and IE from our evaluation.

On mobile devices, we found the blacklist speed and cover-
age of Firefox to be identical to its desktop counterpart. O�ine
veri�cation of the GSB API data also showedthatmobile Safari
was consistent with mobile Chrome. We therefore do not du-
plicate the respective metrics in the tables in this section. How-
ever, neither mobile Chrome nor mobile Opera showed consis-
tency with their desktop versions. Note that due to limited mo-
bile hardware, we could not accurately measure the speed of
mobile Opera across all experiments, so we exclude this data.
Data Aggregation. We aggregate our blacklist mea-

surements based on the objectives of each experiment, as
de�ned in Section 6. For longitudinal comparisons, we group
blacklist performance by deployment; to evaluate evasion,
we aggregate multiple deployments by experiment or batch.
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Desktop Mobile Avg. Tra�c
GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Deployment Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage All Requests Successful
Requests

1 May 2019 100.0% 00:44 (hh:mm) 100.0% 02:02 98.1% 00:37 100.0% 09:19 100.0% 0.0% 1677 1151
2 Jul. 2019 100.0% 00:51 100.0% 02:38 70.4% 00:32 55.6% 35:28 100.0% 0.0% 7003 1491
3 Sep. 2019 64.8% 00:50 61.1% 04:44 22.2% 01:52 13.0% 159:22 64.8% 14.8% 286 211
4 Oct. 2019 98.1% 01:00 100.0% 02:19 64.8% 00:55 50.0% 03:05 98.1% 14.8% 3756 2020
5 Nov. 2019 100.0% 01:26 100.0% 02:27 59.3% 00:38 13.0% 39:11 100.0% 0.0% 1566 682
6 Dec. 2019 100.0% 00:46 100.0% 02:34 48.1% 00:28 70.4% 00:28 100.0% 9.3% 3255 1554

Table 2: Blacklist performance vs. unevasive phishing (Experiment A: raw data for each deployment).
Desktop Mobile Avg. Tra�c
GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Deployment Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage All Requests Successful
Requests

1 May 2019 89.5% 02:29 (hh:mm) 88.0% 10:20 83.4% 03:54 54.9% 07:36 89.5% 0.0% 2038 603
2 Jul. 2019 99.3% 01:46 99.5% 05:42 43.0% 01:41 0% - 99.3% 31.8% 508 53
3 Sep. 2019 79.9% 02:21 69.5% 08:24 50.1% 02:36 3.2% 34:47 79.9% 29.3% 1073 589
4 Oct. 2019 86.7% 01:32 90.0% 10:19 58.2% 01:51 0% - 86.7% 35.0% 545 45

Table 3: Blacklist performance vs. evasive phishing (Experiments B, C, D: average of all deployments).

Figure 5: Aggregate speed and coverage of all blacklists
against uncloaked websites (Experiment A,Deployments 1-6).

8.1 Discovery
Of the 4,158 URLs that we deployed, 4,068 received tra�c
from at least one crawler. The 94 URLs which were never
visited were all part of Deployment 3: 81 URLs were part
of Experiment E (reported to a single entity) and 13 were
post-redirection landing pages within Experiment C.

3,514 of our URLs were blacklisted in at least one browser.
Of the 644 URLs never blacklisted, 299 were part of Experi-
ment F (in which sophisticated cloaking successfully evaded
detection), 131 were part of Experiments E or G (which were
not designed to guarantee discovery), and 214 were part of
Experiments B, C, and D (with cloaking and redirection).

Given that the aforementioned lack of tra�c can be
attributed to the ecosystem issues we identi�ed during
Deployment 3 (discussed in Section 8.2), and the fact that
all websites from Experiment A were blacklisted in at least
one browser, we believe that our reporting methodology was
successful in ensuring prompt discovery by the ecosystem.

8.2 Overall Blacklist Performance
In Table 2, we show the blacklist speed and coverage results
from each of the six deployments of Experiment A, as well
as the average number of crawler requests to each individual
website. Because this experiment consisted solely of unso-

phisticated phishing websites without any form of evasion,
it allows us to establish a baseline for best-case blacklist per-
formance which we can compare against other experiments.

Desktop Blacklists. With an average coverage of 92.9%
and an average speed of 56 minutes (based on the medians
across oursix deployments),overall,GSB proved to be the best-
performing blacklist we tested. SmartScreen showed a slightly
higher coverage of 93.2%, but had a slower speed of 3 hours
and 47 minutes. Opera’s coverage was the lowest, at 60.5%,
though its 55-minute speed managed to inch ahead of GSB.

Mobile Blacklists. The mobile version of Firefox mir-
rored the 92.9% coverage of GSB on desktop and had the
highest coverage of the mobile blacklists we tested. Mobile
Chrome and mobile Safari delivered a much lower coverage
of 57.8%, whereas Opera’s coverage was minimal at 3.7%.

Although aggregate speed and coverage metrics provide
an assessment of overall blacklist performance, they fail to il-
lustrate speci�c di�erences in behavior between blacklists. In
Figure 5, we plot the growth of each blacklist’s coverage over
the course of the �rst 12 hours of our deployments (the same
data over the full one-week deployment is in Figure 6). We ob-
serve that GSB and Opera both start blacklisting as early as 20
minutes after receiving our phishing reports. SmartScreen’s
earliest response occurred about one hour after GSB and
Opera, and grew over a seven-hour period thereafter. On
desktop platforms, GSB coverage grows quickly and stabilizes
after approximately three hours; on mobile devices, coverage
grows more slowly over a longer period and is a subset of the
desktop blacklisting. We did not observe any patterns in our
website con�gurations that consistently led to mobile black-
listing, nor did such websites receive more crawler tra�c.

Long-term Blacklist Consistency. High blacklist speed
and coverage are necessary to e�ectively protect users
from phishing websites, but, given the pressure upon the
ecosystem by phishers [2, 25], it is equally important that
blacklist performance remains consistent in the long term.
By comparing the measurements between successive deploy-
ments (in Table 2 and 3 for non-evasive and evasive phishing
websites, respectively), we can evaluate this consistency.

Perthedata forExperimentA,weobserve thatbothGSBand
SmartScreen delivered 100% coverage and similar speed in �ve
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Desktop Mobile Avg. Tra�c
GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Experiment Batch Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage All Requests Successful
Requests

Experiment A
(Baseline) 92.9% 00:57 (hh:mm) 93.2% 02:48 60.5% 00:55 57.8% 17:30 92.9% 3.7% 3452 1366

JavaScript Cloaking 88.3% 01:03 100.0% 03:30 49.4% 00:56 0.0% - 88.3% 0.0% 455 115Experiment B
(Basic Evasion) Mobile Cloaking 100.0% 00:55 100.0% 02:39 44.0% 00:38 0.0% - 100.0% 0.0% 936 207

bit.ly Redirection - Lure 86.1% 01:25 91.4% 03:02 46.3% 01:40 0.0% - 86.1% 0.0% 2313 2313
bit.ly Redirection - Landing 86.1% 02:58 88.0% 12:45 59.3% 02:46 25.9% 43:51 86.1% 25.0% 593 392
.com Redirection - Lure 83.3% 01:44 99.4% 03:09 50.6% 01:57 0.0% - 83.3% 41.4% 440 81
.com Redirection - Landing 88.9% 02:48 87.0% 09:35 59.7% 02:55 24.1% 11:46 88.9% 30.6% 740 454
.com Redirection w/ .htaccess 80.2% 01:36 77.2% 08:51 37.7% 01:31 0.0% - 80.2% 25.3% 275 28

Experiment C
(Typical Evasion
- Redirection)

.com Redirection w/ .htaccess - Landing 84.3% 02:43 86.6% 10:01 51.9% 02:33 9.3% 11:19 84.3% 32.9% 370 63
bit.ly Redirection - Lure 96.3% 01:09 94.4% 06:51 58.0% 00:41 0.0% - 96.3% 0.0% 5143 5143
bit.ly Redirection - Landing 97.2% 02:03 72.7% 11:56 58.0% 02:21 4.3% 00:01 97.2% 52.5% 876 497
.com Redirection - Lure 95.7% 01:10 99.4% 06:59 73.5% 27:24 0.0% - 95.7% 54.9% 1582 984
.com Redirection - Landing 98.1% 02:10 71.3% 11:48 66.7% 01:50 3.7% 46:28 98.1% 50.0% 1061 534
.com Redirection w/ .htaccess - Lure 93.8% 01:13 77.2% 10:07 37.7% 00:57 0.0% - 93.8% 37.0% 1051 583

Experiment D
(Domain re-use)

.com Redirection w/ .htaccess - Landing 95.4% 02:17 67.3% 12:19 45.7% 01:53 0.0% - 95.4% 40.7% 332 42
Reported to APWG 98.1% 02:47 100.0% 02:29 41.7% 02:41 51.9% 04:53 98.1% 41.7% 2901 1591Experiment E

(Discovery) Reported to PayPal 16.2% 01:06 38.4% 02:43 6.5% 00:49 13.0% 00:35 16.2% 2.8% 450 293
Mouse Movement Cloaking 0.0% - 0.0% - 0.0% - 0.0% - 0.0% 0.0% 37 34
CAPTCHA Cloaking 0.0% - 42.6% 03:06 0.0% - 0.0% - 0.0% 0.0% 47 42
Noti�cation Cloaking 0.0% - 0.0% - 0.0% - 0.0% - 0.0% 0.0% 48 41
.htaccess Cloaking 100.0% 01:37 100.0% 10:47 42.6% 00:40 0.0% - 100.0% 0.0% 702 86
Mouse Movement Cloaking w/.htaccess 59 20
CAPTCHA Cloaking w/.htaccess 45 19

Experiment F
(Emerging Evasion)

Noti�cation Cloaking w/.htaccess
0.0% coverage

48 21
Standard URL Report 20.4% 00:38 0.0% - 0.0% - 20.4% 00:17 20.4% 0.0% 5 2Experiment G

(Reporting Methods) Chrome Suspicious Site Reporter (CSSR) 90.7% 10:13 0.0% - 0.0% - 90.7% 10:17 90.7% 0.0% 16 14

Table 4: Blacklist performance aggregated by each batch (average of all deployments).

of the six deployments. Opera remained consistent in terms of
speed across �ve deployments. For GSB and SmartScreen, we
applied ANOVA to each respective set of raw baseline desktop
blacklist speed observations (as aggregated in Table 2), treat-
ing each deployment as a separate group. We found the di�er-
ences to be statistically signi�cant, with a p-value below 0.01
for both tests. We believe that these variations—even if rela-
tively small—stem from the complexity of the underlying anti-
phishing systems, the order in which reports are processed,
anddata sharing methods across the ecosystem [64]. However,
except for GSB in mobile Firefox, blacklists inmobile browsers
did not prove to be consistent with their desktop counterparts.

Also, notably, coverage dropped dramatically during
Deployment 3, both for non-evasive and evasive phishing,
as shown in Tables 2 and 3. In analyzing this anomaly, we
�rst ruled out technical issues and con�rmed that all of our
e-mail and API reports were successfully delivered. We also
redeployed Experiment A with prior domains and reproduced
the degraded coverage. After analyzing the results of
single-entity reporting in Experiment E (summarized in
Table 4), we found that the coverage from reports sent
directly to PayPal was similarly low: its coverage in GSB was
9.3% in Deployment 3, down from 44.4% in Deployment 1.
Upon comparing crawler tra�c between these deployments,
we found that crawler activity as a result of PayPal reports
was absent from the majority of websites in Deployment 3.
Although we cannot rule out other ecosystem factors, we
believe that this absence was a key cause of the overall
coverage drop, and we disclosed it to PayPal (we later received
acknowledgment of the issue, which was ultimately resolved).

Baseline coverage recovered in subsequent deployments,
except for a single website in Deployment 4 that failed to be
blacklisted by GSB. Despite being blacklisted by SmartScreen
and crawled by numerous other entities, it was never crawled
by GSB: our original GSB report was likely never acted on,
and GSB did not appear to discover the URL through the other
entities to which we reported. Though an outlier, this suggests
that the ecosystem may bene�t from more robust data sharing.

Blacklist Persistence. Across all of our deployments,
once a URL was blacklisted in a particular blacklist, we did
not observe de-blacklisting during the deployment or within
one week immediately thereafter. After the conclusion of our
�nal deployment, we served 404 errors from all of our URLs
and monitored them for an extended period. We found that
the earliest removal from blacklists occurred 29 days after
we had originally reported the respective URL.

We suspect that de-blacklisting may depend on factors such
as the presence of benign content on a domain, the domain’s
reputation, or whether the web server is online. Although
our experiments were not designed to pinpoint criteria for de-
blacklisting, we believe that the premature removal of phish-
ing URLs from blacklists is currently not a signi�cant issue.

8.3 Typical Evasion Techniques
In Table 4, we show blacklist performance for the speci�c
batches within each experiment, aggregated across all
deployments. This allows us to compare speed and coverage
when blacklists are faced with di�erent evasion techniques.

Websites with mobile user agent cloaking (in Experiment
B) had a negligible e�ect on desktop blacklisting compared to
the unevasive Experiment A (if we disregard the skew from
Deployment 3): modern blacklists can, in fact, reliably detect
phishing websites with certain basic evasion techniques.
Interestingly, however, both GSB and Opera had 0% coverage
on mobile devices across all deployments of Experiment B,
which is very undesirable given that Experiment B websites
were con�gured to be accessible exclusively on mobile de-
vices. In Figure 6, we visualize blacklisting of these websites
in each blacklist over the full duration of our deployments.

In Experiment C, we tested the addition of three types
of redirection on top of the basic evasion techniques in
Experiment B. For brevity, we focus our discussion on
blacklisting by GSB on desktop, and we use the average speed
and coverage across all deployments of Experiment B (00:59
and 94.2%, respectively), calculated per Table 4, as a point of
comparison. On average, redirection via bit.ly links slowed
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Figure 6: Comparison of all blacklists’ aggregate performance
for uncloaked websites vs. websites with Mobile cloaking.

blacklisting speed of the corresponding landing pages to 02:58,
and reduced coverage to 86.1%. Redirection via .com domain
names slowed the speed to 02:48 and reduced coverage to
88.9%. By adding .htaccess cloaking on top of redirection,
speed only slowed to 02:43, but coverage fell further to 84.3%.
As shown in Table 4, the blacklisting speed of the correspond-
ing lures was at least 1 hour faster in each case; however,
attackers’ ability to easily generate many lures increases the
importance of blacklisting the actual landing pages [61].

In Experiment D, we re-deployed phishing websites on the
same .com domains as in Experiment C, but with di�erent
paths, to simulate how attackers might re-use compromised
domains in the wild. Although we observed increased speed
and coverage compared to Experiment C, the speed remained
slower than in experiments without redirection. Only 4.3%
of URLs in Experiment D were blacklisted immediately
upon deployment, which may represent a gap exploitable
by phishers. In Figure 7, we visualize the di�erence in GSB
desktop blacklisting of the cloaking techniques considered in
this section. To maintain consistency,we exclude Deployment
3 from the �gure. For clarity, we also omit the batches with
bit.ly links,as they followed the same trend as .com redirection
links, and were only blacklisted slightly more slowly.

In mobile Chrome and mobile Safari, Experiment C cover-
age rangedfrom just9.3% to 25.9% andwas 8 to 40 hours slower
than on desktop. Only landing pages, rather than lures, were
blacklisted. Interestingly, in Experiment D, coverage dropped
to a range of 3.7% to 4.3%, despite the ecosystem’s knowledge
of our domains from previously blacklisted URLs. We discuss
the implications of these inconsistencies in Section 9.

Overall, we observe that delays and gaps exist in the
blacklisting of typical phishing websites: these gaps provide
a prime opportunity for attackers to successfully target
their victims [46], help explain the prevalence of evasion
techniques, and should be addressed by the ecosystem.

Disabling of Bit.ly Links. To deter abuse, bit.ly disables
redirection links that point to known malicious content.
During Deployment 1, bit.ly disabled 98.1% of the links within

Figure 7: Comparison of aggregate speed and coverage of
GSB against the di�erent evasion techniques we tested.

Experiment C, and 88.9% of the links within Experiment D,
with an average speed of 11:36 (far slower than the tested
blacklists). After we switched to a new (non-disabled) API
key for subsequent links, no other links were disabled during
our research, except for a single URL during Deployment 3.
We disclosed these �ndings to bit.ly but received no response.

8.4 Emerging Evasion Techniques
None of the batches of sophisticated cloaking techniques
within Experiment F saw any blacklisting, except for one
batch with CAPTCHA cloaking, which had 42.6% coverage
in SmartScreen only (shown in Table 4). Upon further investi-
gation, we discovered that SmartScreen’s detection occurred
due to its classi�cation of obfuscation within the CAPTCHA
JavaScript code as malware. Because such detection can triv-
ially be bypassed [66], we believe that behavior-based evasion
techniques represent a threat to the anti-phishing ecosystem.

A fundamental distinction between the advanced cloaking
techniques in Experiment F and the other experiments is
that they require interaction from a human user to trigger
the display of phishing content (i.e., clicking on a button,
solving a CAPTCHA challenge, or moving the mouse). Such
behaviors might be typical of a human user (and may not even
raise suspicion if the user is successfully fooled by an e-mail
lure, or if the landing page matches the look-and-feel of the
impersonated organization). However, web crawlers would
need to be specially developed to emulate such behaviors or
otherwise �ngerprint such cloaking.

8.5 Single-entity Reporting
In Experiment E, we observed clear di�erences in blacklist
response when comparing reporting to the APWG (only) with
reporting to PayPal (only), as shown in Table 4. Even if we ex-
clude the problematic performance of PayPal during Deploy-
ment 3 (as discussed in Section 8.2), reporting to the APWG
resulted in higher coverage across all blacklists and more
crawler tra�c to each website. However, the speed of GSB
blacklisting after reporting to PayPal was 01:31 faster than
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Figure 8: Comparison of traditional URL-only reporting with
evidence-based reporting in Google Chrome (Experiment G).

that of the APWG. This suggests that between entities, there
exist di�erent implementations for propagating reported
URLs to blacklists. Due to each entity’s unique strengths, we
believe it is important to report phishing to multiple entities.

8.6 Evidence-based Reporting
In Figure 8 and Table 4, we compare the di�erence in GSB
speed and coverage between traditional URL reporting
and evidence-based reporting through CSSR [11] from
Experiment G (note that we limit the x-axis in the �gure as
coverage did not increase after 24 hours).

We observe that the two reporting approaches each re-
sulted in a distinct crawler response and subsequent blacklist
performance. Traditional URL reporting was followed by an
immediate burst of crawler tra�c and a negligible amount of
crawler tra�c in the hours thereafter. Even though 50% of the
phishing websites we reported were successfully retrieved by
a crawler, only 20.4% were ultimately blacklisted. The earliest
blacklisting occurred 20 minutes after reporting, and coverage
stopped growing after approximately four hours. Reporting
through CSSR yielded a slower initial speed, but resulted not
only in 90.7% coverage within 24 hours,butalso a substantially
higher amount of crawler tra�c, spread over a long period of
time, with 47.5% fewer requests being denied by cloaking. The
earliest blacklisting occurred 50 minutes after reporting, and
coverage matched that of the traditional reporting approach
by the �ve-hour mark. Although we did not repeat these
measurements over time, we found the di�erences in the
observed distributions of blacklist speeds to be signi�cant
in the Mann-Whitney U test [39], with a p-value below 0.01.

8.7 Crawler Tra�c
Between May 2019 and January 2020, the 4,158 URLs in our
main deployments received a total of 2.14 million HTTP
requests from 41,750 distinct web crawler IPs. An additional
20.50 million requests came from our monitoring infrastruc-
ture to check our websites’ blacklist status. Our websites

Figure 9: Cumulative Distribution Function of crawler tra�c
to our phishing websites, across all deployments.

remained online for the duration of our deployments (i.e.,
were not taken down [1]) as we had made our hosting provider
aware of the nature of our research. Over time, across all de-
ployments except the third,we also observeda consistent,very
slowly increasing level of crawler tra�c to our infrastructure,
which supports the e�cacy of our experimental controls.

55.27% of the crawler requests were successful and returned
an HTTP 200 status code (or 302 for redirection links). The
remaining requests returned a 404 status code: 7.56% were
denied by cloaking and 37.17% requested nonexistent URLs.
Many of the nonexistent URLs represented crawler e�orts
to scan for phishing kit archives or credential �les, which is
a common way to �ngerprint phishing websites and identify
stolen credentials that may linger on the same server [13].

In Figure 9, we show the cumulative distribution of crawler
tra�c to our websites. We observe that after an initial burst
within the �rst day of deployment, successful tra�c remains
fairly consistent for the remainder of the deployment. This
tra�c accounts for crawlers that continuously monitor for
the presence of phishing content.

The relative proportion of requests that were denied
through cloaking fell over time. The increased crawling e�ort
early on allows crawlers to �ngerprint evasion techniques
such that future requests are more likely to be successful. We
believe that this behavior in part helped blacklists deliver the
high coverage we observed, even for websites with combina-
tions of cloaking techniques such as Experiment C.

9 Discussion and Recommendations
Although blacklists are capable of detecting the typical
evasion techniques which we tested—including cloaked
redirection—our tests have shown that these techniques
generally both slow speed and reduce coverage. Notable gaps
in coverage also remain, particularly on mobile devices. Given
attackers’ ability to adapt to the ecosystem by leveraging so-
phisticated evasion strategies, such as those in Experiment F,
we believe that evasion remains a key anti-phishing concern.

Defensive Strategy. To the best of our knowledge, sys-
tematic longitudinal measurements of anti-phishing defenses
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are not currently being performed at the ecosystem level.
The PhishTime framework, combined with deployments of
targeted experiments, can be used as a defensive strategy
to identify gaps in defenses and help address them through
security recommendations. Although our work focuses on
browser blacklists, the scope of future experiments could
also be shifted to evaluate other mitigations (e.g., spam
�lters). Moreover, the ecosystem analysis could be aimed
at areas other than evasion techniques, such as identifying
attacker-friendly web hosts or compromised domains [1].

Depending on the objectives of the entity carrying out
the experiments, PhishTime can be used to assess aspects
of the ecosystem as a whole, or the behavior of a speci�c
entity or mitigation. We believe this is a crucial �rst step
toward achieving consistency in—and perhaps accountability
for—anti-phishing and account protection e�orts [57] of the
many di�erent organizations that phishers impersonate. We
have proposed this approach to the APWG; subsequently,
e�orts are underway to incorporate PhishTime as an
ecosystem-level service which can be used to monitor URLs
reported to the APWG eCrime exchange and drive future
experiments based on this dataset or external reports.

Role of Blacklists. As a supplement to ecosystem de-
fenses, numerous commercial vendors o�er phishing website
take-down services for major brands [2, 45]; such websites
are either detected by the vendor’s own scanning e�orts or
reported to the brand. Take-downs are performed via requests
sent by the vendor to a hosting provider or domain registrar,
are typically reliant on cooperation, and can be subject to
delays of several hours or even days [1, 7]. In parallel with
our PhishTime experiments, we collaborated with PayPal to
measure the take-down speed (for criminal phishing websites)
of one major vendor during the same period, and found a me-
dian speed of 23.6 hours: considerably slower than the typical
speed of blacklists observed in Section 8.2. As blacklists are
not subject to the delays inherent to take-downs, we believe
that they can better serve as the �rst line of defense against
phishing and may render take-downs unnecessary when their
coverage is su�cient; this further underscores the bene�ts of
sealing gaps in blacklists’ detection of evasive websites.

Reporting Protocols. Given the prevalence of evasive
phishing in the wild and the promising performance of CSSR,
we believe that the adoption and expansion of evidence-based
reporting protocols should be a priority for the ecosystem.
In addition to supporting manual reporting by humans, such
protocols should be made available to vetted automated
anti-phishing systems. A key bene�t of such an integration
would be if one entity detects an evasive phishing website,
it could share the parameters used for detection to help other
entities (e.g., blacklists) avoid duplication of e�ort while
improving mitigation (e.g., speed and coverage). Moreover,
such evidence can be used to support take-down e�orts [1]
or law enforcement intervention if an initial mitigation, such
as blacklisting, proves insu�cient. Evidence-based reporting

could also help harden systems against abusive, deliberately
false reports: such reports could be �ltered out based on the
evidence itself (e.g., by identifying anomalies within a pool of
related reports, rather than solely relying on attributes that
are easier to fabricate, such as the bare URL).

Beyond the expansion of enhanced reporting protocols,
we believe that standardized methods for reporting phishing
across the ecosystem—rather than to individual entities—
would help improve the ecosystem’s collective response. As
we observed with single-entity reporting in Experiment E,
each anti-phishing entity functioned di�erently and, thus,
a�ected blacklisting in a di�erent way. Additionally, the
drop in coverage we observed during Deployment 3 suggests
that the ecosystem may in some cases be fragile. If one
anti-phishing entity contributes disproportionately to the
mitigation of a particular type of threat, it can become a choke
point, which, in case of a temporary failure or degradation,
could provide an opportunity for phishers to launch a
burst of successful attacks. However, strict centralization of
reporting could carry privacy or legal concerns; therefore,
in a standardized reporting framework, one or more trusted
intermediaries could instead serve to optimally route reports.
Certi�cate Revocation. Throughout our deployments,

we monitored the OSCP revocation status [40] of our domains’
SSL certi�cates, which we automatically obtained from Let’s
Encrypt (a free Certi�cate Authority with the highest repre-
sentation among phishing websites in the wild [16]). None of
the certi�cates were revoked. In addition,we foundthatcerti�-
cates could also be issued for domains that were already black-
listed, as Let’s Encrypt had discontinued checking domains
in new certi�cate requests against GSB in early 2019 [33].
Although the role of Certi�cate Authorities as a mitigation
against phishing is subject to debate [16], the ease at which
attackers can obtain certi�cates warrants closer scrutiny.

Mobile Blacklists. Mobile users account for a majority of
Internet tra�c [14], and prior research has shown that mobile
web browsers are particularly prone to phishing attacks [37].
Yet, our �ndings indicate that the anti-phishing protection in
mobile web browsers continues to trail behind that of desktop
browsers. The bandwidth used by mobile devices—which
may be subject to mobile carrier restrictions—was historically
a barrier to desktop-level GSB protection in mobile Chrome
and Safari [44]. However, over a Wi-Fi connection (which
we used for monitoring), the full blacklist should be checked.

Although our experiments were unable to determine ex-
actly how GSB or Opera decide if a URL blacklisted in the
respective desktop browser should also be blacklisted on mo-
bile (e.g., they might rely on manual review or additional
classi�cation attributes to determine maliciousness), we ob-
served that the evasive websites we deliberately con�gured
to only be accessible in mobile browsers (i.e., Experiment B)
were in fact never blacklisted in these browsers5. We therefore

5This issue does not apply to mobile Firefox: from version 63, mobile
Firefox always checks the full desktop version of the GSB blacklist.
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believe that mobile blacklisting represents a key ecosystem
vulnerability, and that it should be made consistent to better
protect mobile users inevitably targeted by phishers.

EcosystemChanges. A notable ecosystem development
took place in December 2019: in Chrome 79, Google improved
the speed of GSB by “up to 30 minutes” [4] by incorporating
real-time lookups of phishing URLs for users who opt in. Al-
though not yet enabled by default, this change acknowledges,
and seeks to address, the delay to blacklisting speed possible
in the default implementation of GSB, which caches and
periodically updates a local copy of the URL blacklist. This
change also applies to the mobile version of Chrome and may,
therefore, help address the aforementioned gaps in blacklist-
ing in mobile Chrome. Due to the timing of the release of this
feature, we were not able to evaluate it in our experiments.

9.1 Disclosures
Beyond the disclosures to PayPal and bit.ly discussed in
Section 8, after completing our �nal deployment, we sent
a report with our experimental �ndings to PayPal, Google,
Opera, Microsoft, and Apple, with a focus on the sophisticated
evasion techniques that we identi�ed and the gaps in black-
listing on mobile devices. All the organizations acknowledged
receipt of our report. Google followed up to request details on
the JavaScript cloaking, and acknowledged the gap in mobile
blacklisting, which it is actively working to address. We later
met with Opera who, as a result, incorporated additional
ecosystem data sources to improve its discovery of URLs
(and ultimately increase blacklist coverage). Moreover, Opera
found that these data sources—which enhanced its server-side
blacklist—also helped eliminate disparities in mobile blacklist
warnings. We described our experimental methodology
in each of our disclosures; the former three organizations
(which followed up) did not express concerns with it.

9.2 Ethical Considerations
We sought to address a number of potential ethical concerns
while conducting this research.

Risk to Human Users. To ensure that our phishing
websites could not harm any potential human visitors, we
utilized random paths and only distributed the full URLs
directly to anti-phishing entities. In the event of form
submission, our websites performed no backend processing
or logging of POST data; the use of HTTPS ensured that data
would not leak in transit.

Infrastructure Usage. We followed the terms of service
of all services and APIs used for this research, and we obtained
permission from Google to report URLs programmatically
to Google Safe Browsing. We informed our hosting provider
(Digital Ocean) about our research and obtained permission
to leverage server infrastructure accordingly.

Adverse Side-e�ects.Despite our relatively large sample
size for each deployment, we do not believe that the volume
of URLs we reported hampered the anti-phishing ecosystem’s

ability to mitigate real threats. Based on the overall phishing
volume per the GSB Transparency Report [25], each of our
deployments accounted for less than 1% of all phishing
detections made during the same period. We informed PayPal
of our experiments to ensure that resources were not wasted
on manual investigations of our activity (note that PayPal
stated that this knowledge did not in�uence how it treated
the individual phishing URLs we reported). We also obtained
permission to use the PayPal brand and promptly disclosed
the ecosystem vulnerabilities that we discovered.

9.3 Limitations
Despite the controls discussed in Section 7.4,ourexperimental
�ndings should be considered alongside certain limitations.
We did not modify the appearance of our phishing websites
between deployments, and they impersonated a single brand
(PayPal). Therefore, our �ndings may be skewed by detection
trends speci�c to this brand [48]. Possible �ngerprinting of
the websites’ source code over time and the lack of positive
reputation of our domains could increase the speed of black-
listing, while our use of randomized, non-suspicious URLs for
each website may have reduced it [64]. We believe that our
websites still realistically represent phishing in the wild, as at-
tackers extensively re-use phishing kits (some of which share
common backends for multiple brands) and also routinely
leverage fully randomized URLs [45].

Itwasnotfeasible toachieveaone-to-onemappingbetween
our 2,646 unique domains and the 45 hosting IP addresses
available to us. To mitigate potential skew from IP reuse, we
distributed IP mappings as uniformly as possible within each
batch of websites. Ultimately, URLs on certain IPs were not
signi�cantly more likely to be blacklisted than others: across
all experiments, the standard deviation in the distribution of
the average GSB blacklist speed by IP was only 3.8 minutes.

When reportingourphishingwebsites,ourgoalwas toguar-
antee timely discovery by blacklists. Given the high baseline
speed and near-perfect coveragewe observed in Experiment A,
we believe that we succeeded in this goal. Nevertheless,unlike
real phishers, we did not spam victims or trigger other actions
that could lead to detection by blacklists (such as signals
from browser-based classi�ers [35]). Thus, our reporting
methodology may not fully re�ect the continuous indicators
of abuse observable in the wild; it may also be skewed in
favor of GSB: the only blacklist to which we reported directly.

Finally, our experiments were limited in scope to a subset
of the di�erent phishing website con�gurations available to
attackers. Additional deployments can naturally be adapted to
test other con�gurations or those that appear in the future. Al-
thoughthePhishTimeframeworkitselfmayfail to identifycer-
tain attacks that entirely avoid discovery, the use of additional
sources of phishing URLs could address this shortcoming.

Fully Automating PhishTime. In our deployment of
the PhishTime framework, the website analysis ( 3 ) and
experiment generation stages ( 4 ) were mostly done man-
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ually. However, through the addition of a semantic phishing
classi�cation engine (not only to �ngerprint the server-side
cloaking of each phishing website, but also to analyze its
client-side evasion), end-to-end automation could be achieved
for experiments. Manual intervention would then only be
needed to evaluate anomalous �ndings and verify validity.

10 RelatedWork
To the best of our knowledge, PhishTime is the �rst sys-
tematic methodology for the continuous measurement and
enhancement of the protection o�ered by the anti-phishing
ecosystem, and it enabled the �rst controlled longitudinal
empirical study of the performance of browser blacklists.
Although other controlled studies were previously done,
they focused on individual anti-phishing entities and were
performed over a short period,which limited the scope of their
security recommendations and their ability to validate trends.

The work most similar to ours is that of Oest et al. [44], who
proposed the framework for empirically measuring blacklists
which we adapted. The authors used the framework to deploy
�ve batches of 396 arti�cial phishing websites over two weeks
to measure �ve distinct anti-phishing entities’ response to
websites with di�erent sets of cloaking (similar to our Experi-
mentE). The authors foundanddisclosed that several cloaking
techniques could successfully defeat blacklists, and that due to
a bug, mobile GSB browsers saw no blacklisting whatsoever
(the latter issue has since been addressed). However,by report-
ing to just a single entity per batch, the study did not clearly
di�erentiate between blacklist detection and discovery, and
therefore underestimated the ecosystem’s speed, especially
for uncloaked websites. Also,unlike our study, it could not pre-
cisely compare the real-world impact of delays in blacklisting
caused by di�erent cloaking techniques. Because we guided
our experiments by current ecosystem trends (rather than an
o�ine study of cloaking), our experiments more closely emu-
lated real-world attacks and allowed us to evaluate advanced
evasion. Consequently, we found new blacklist detection
vulnerabilities, long-term inconsistencies, and lingering gaps
in blacklisting coverage in mobile browsers. We also found
individual cloaking techniques to be a far lesser threat than
combinations thereof, which the prior work did not evaluate.

Peng et al. [48] deployed 66 arti�cial phishing websites
over four weeks to investigate how well VirusTotal and its
sub-vendors are able to detect phishing content. This study
focused on showing that detection models vary greatly across
di�erent anti-phishing vendors. These variations help explain
the incremental growth that we observed in the coverage of
evasive phishing websites across di�erent blacklists.

Other work has indirectly measured the performance of
blacklists. Oest et al. [46] analyzed a large sample of phishing
tra�c to live phishing websites trackable through third-party
web requests and found a high degree of sophistication in
clusters of large attacks. The authors estimated the average
e�ect of blacklisting across the entire dataset and showed the

importance of adequate blacklisting speed by quantifying the
potential increase in victims caused by delays; this technique
can also help contextualize our experimental �ndings. Han
et al. [26] monitored a honeypot server on which attackers
installed phishing kits. Although this approach enables the
measurement of attacker and victim interactions with the
kits (in addition to the ecosystem’s response), the di�culty
of controlling variables such as the sample size, deployment
time, and website con�guration highlights the advantages of
our measurement methodology based on arti�cial websites.

Earlier studies measured the blacklisting of phishing
websites after they appeared in various feeds [36, 50, 52, 63].
Because feeds have an inherent delay, the resulting measure-
ments of blacklist speed are imprecise. However, they provide
insight into the coverage of blacklists across platforms and the
characteristics of phishing websites: hence, we adapted this
approach in the PhishTime framework and enhanced it with
direct reporting to verify blacklists’ detection capabilities.

11 Conclusion

We have proposed methodology for systematically evaluating
the protection provided by the anti-phishing ecosystem
in the long term, with a focus on browser blacklists and
phishing reporting protocols. By identifying sophisticated
evasion techniques used by phishing websites in the wild
and by replicating them in a controlled setting, we were able
to identify and help address the gaps that attackers exploit
in existing defenses. With a high degree of automation, our
approach provides the �exibility to deploy experiments that
not only realistically replicate current attacks, but can also be
used to proactively test emerging threats or new mitigations.

Anti-phishing defenses used by the ecosystem—including
browser blacklists—are highly complex systems. Amid a
record volume of phishing attacks [25], these defenses are
often capable of quickly responding to phishing websites. Yet,
as we observed, even a seemingly small failure in one system
component, such as a crawler or reporting channel, may allow
certain attacks to succeed and harm users. Analysis of data
from our empirical measurement approach can help pinpoint
such failures when they have an e�ect on overall mitigation
performance.

Beyond making ecosystem-level recommendations, our
approach can bene�t organizations impersonated by phishers.
Experiments that focus on a speci�c brand can measure how
e�ectively the ecosystem helps protect thatbrand’s customers,
and how well the brand implements its own anti-phishing
mitigations, which may otherwise be di�cult to measure.

Given the evolution of both phishing attacks and corre-
sponding defenses, we believe that longitudinal measure-
ments of the ecosystem are essential not only for maintaining
an understanding of the ecosystem’s protection, but also for
evaluating new security features as they are released, such
that the security of users can be continuously ensured.
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